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Summary

Rapid advances in synthetic and screening technology have recently enabled the simultaneous synthesis and
biological evaluation of large chemical libraries containing hundreds to tens of thousands of compounds, using
molecular diversity as a means to design and prioritize experiments. This paper reviews some of the most im-
portant computational work in the field of diversity profiling and combinatorial library design, with particular
emphasis on methodology and applications. It is divided into four sections that address issues related to molecular
representation, dimensionality reduction, compound selection, and visualization.

Introduction

There is only atoms and space. The rest is opinion.

Democritus

Diversity is a much sought after commodity these
days. Governments, universities and corporations
alike espouse the benefits of biological, cultural, in-
tellectual and commercial diversity. The problem is
that no two individuals or organizations can seem to
agree upon a common definition for this term. What
one person perceives a being diverse, another sees as
being homogeneous. Maybe that’s the point. Diversity,
after all, is based upon human perception and is, there-
fore, inherently subjective. It is a quality rather than
a quantity. However, with the advent of combinator-
ial chemistry and high-throughput screening as tools
for massively parallel drug discovery, computational
chemists have found themselves in need of quantita-
tive measures that can be used to distinguish between
good and mediocre experiments.

Historically, drug discovery has been based on a
serial and systematic modification of chemical struc-
ture guided by the ‘similar property principle’, i.e.
the assumption that structurally similar compounds
tend to exhibit similar physicochemical and biolog-
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ical properties. New therapeutic agents are typically
generated by identifying a lead compound, and cre-
ating variants of that compound in a systematic and
directed fashion. The first phase of this process, known
aslead generation, is carried out by random screening
of large compound collections, such as natural prod-
uct libraries, corporate banks, etc. The second, known
as lead optimization, represents the rate-limiting step
in drug discovery, and involves the elaboration of
sufficient SAR around a lead compound and the refine-
ment of its pharmacological profile. Prior to the arrival
of combinatorial chemistry, this process involved a
simple prioritization of synthetic targets based on pre-
existing structure-activity data, synthetic feasibility,
experience, and intuition.

However, revolutionary advances in synthetic and
screening technology have recently enabled the simul-
taneous synthesis and biological evaluation of large
chemical libraries containing hundreds to tens of thou-
sands of compounds. These tools haven’t changed
the fundamental way in which drugs are discovered,
but they have changed the way in which chemists
contemplate experiments. With the expansion of our
knowledge base of solid and solution-phase chemistry
and the continuous improvement of the underlying ro-
botic hardware, combinatorial chemistry has moved
beyond its traditional role as a source of compounds
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for mass screening, and is now routinely employed in
lead optimization and SAR refinement. This has led
to the conceptual division of combinatorial libraries
into 1) exploratory or universal libraries which are
target-independent and are designed to span a wide
range of physicochemical and structural characteris-
tics, and 2)focusedor directed libraries which are
biased against a specific target, structural class, or
known pharmacophore.

Most work to date has focused on lead generation,
using molecular diversity as a means to design and pri-
oritize experiments. The need for careful experimental
design became apparent as the initial euphoria that ac-
companied the advent of this exciting new technology
gave way to the realization of its practical limitations.
Indeed, it is clear that at least for now the number
and types of molecules that can be synthesized using
parallel synthesis still represents a small fraction of all
the compounds of potential therapeutic interest, and
that the quality of the biological response degrades
rapidly with throughput. Thus, the synthesis and test-
ing of a chemical library should ideally be planned in
a way that renders maximum information about the
underlying biological target. To achieve this goal, it
is no longer sufficient to examine the properties of
individual compounds, but it is also important to as-
sess thecollectivequality and information content of
our libraries. In this respect, molecular diversity can
be viewed as one design strategy for maximizing the
hit-rate of high-throughput screening experiments. It
represents a generalization of the concept of molecu-
lar similarity from individuals to collections, and its
effective use can reduce the redundancy and cost of
experiments and substantially increase the odds of dis-
covering new drugs. It is closely related to molecular
similarity, structure-activity correlation and statisti-
cal series design, which are thoroughly reviewed in
numerous texts [1,2]. The scale and complexity of
the problem is daunting for all but the most gifted
chemists, and makes it ideally suited to computation.

This paper reviews recent advances on computa-
tional aspects of molecular diversity, with particular
emphasis on methodology and applications. There are
probably as many different definitions of diversity as
the number of researchers who are active in the field,
and it is our belief that theoretically the subject borders
on religion. However, many of the concepts described
herein are now routinely employed in combinatorial
library design, and the choice of methods has defini-
tive and measurable practical implications. The article
is divided into three main sections that address issues

related to molecular representation, compound selec-
tion, and visualization. The reader is also referred to
various reviews [3–5,70].

Molecular encoding

Rabbi Raditz of Poland was a very short rabbi with a
long beard, who was thought to have inspired many
pogroms with his sense of humor. One of his disciples
asked,

‘Who did God like better – Moses or Abraham?’

‘Abraham,’ the Zaddik said.

‘But Moses led the Israelites to the Promised Land,’ said
the disciple.

‘All right, so Moses,’ the Zaddik answered.

‘I understand rabbi, it was a stupid question.’

‘Not only that, but you are stupid, your wife’s a meeskeit,
and if you don’t get off my foot you are excommunicated.’

Woody Allen, Getting Even.

Conceptually, the problem of quantifying molecular
diversity involves two parts: the first is the definition
of chemical distance, and the second is the selection
of a representative set of compounds from a (typi-
cally) much larger collection. This section reviews a
number of methods that have been proposed to en-
code molecular structures in a way that is suitable for
numerical processing. It is organized in three parts,
which discuss descriptors derived from the topology,
three-dimensional structure, and physicochemical and
electronic properties of the molecules.

Two-dimensional descriptors

Molecular connectivity indices
When asked to describe a molecule, a chemist will in-
stinctively reach for a pen and some paper and draw a
picture. The picture shows how constituent atoms are
interconnected to form the molecule (i.e. the topol-
ogy of the molecule). Mathematically, this is equiv-
alent to a molecular graph. Molecular connectivity
or topological indices are numerical values calculated
from certain invariants (characteristics) of a molecular
graph [13,14] which encode features such as num-
ber of atoms, branching, ring structures, heteroatom
content, and bond order. They are attractive for quanti-
fying molecular diversity because they are inexpensive
to compute, and have been validated through years
of use in the field of structure-activity correlation.
In particular, the widespread availability of Kier and
Hall’s Molconn-X program [15], which calculates in-
dices based on connectivity, shape, sub-graph counts,
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topological equivalence, electrotopological state and
information content, has done much to promote the
use of molecular connectivity indices.

Topological indices may be classified into four
groups based on their logical derivation:
1) Those derived from the adjacency matrix: the to-

tal adjacency index, the Zagreb group indices,
the Randic connectivity index, the Platt index,
the compatibility code, and the largest eigenvalue
index;

2) Those based on the topological distance matrix,
including the Wiener index, the polarity number,
the distance sum, the Altenburg polynomial, the
mean square distance, the Hosoya index, and the
distance polynomial;

3) Centric indices, including the generalized graph
center;

4) Information-theoretic indices, including the Shan-
non index, the chromatic information index, the
orbital information index, the topological infor-
mation superindex, the electropy index, and the
Merrifield and Simmons indices [13,14].

Binary descriptors
Binary descriptors include substructure keys and
hashed fingerprints. Substructure keys encode molec-
ular structures as bitstrings, each binary digit of which
indicates the presence or absence of a selected struc-
tural feature or pattern. Typical target features might
include the number of occurrences of a particular el-
ement (e.g. the presence of at least 1, 2 or 3 nitrogen
atoms), electronic configurations or atom types (e.g.
sp2 nitrogen or aromatic carbon), common functional
groups such as alcohols, amines etc., and ring systems.
Features that are rare enough not to merit an individual
bit, yet extremely important when they do occur, are
assigned a common bit which is set if any one of the
patterns is present in the target molecule (a ‘disjunc-
tion’). Substructure keys were originally developed
for rapid searching of large databases, but have also
proven effective in similarity applications. Generat-
ing substructure keys is time-consuming, requiring a
substructure search for each target pattern in every
molecule in a database. However, once generated, they
allow a database to be searched by means of Boolean
operations upon the keys; a process performed very
rapidly by digital computers.

Database designers tailor substructure keys to min-
imize molecule retrieval time. As such, the choice of
encoded structural features tends to be application-
specific. For example, keys employed in drug data-

bases encode functional groups of particular interest
to medicinal chemists, while those used in databases
of organometallic compounds contain features related
to metal-carbon bonding. Despite this specificity, sub-
structure keys contain sufficient information about the
molecular structures to permit meaningful similarity
comparisons.

Like structural keys, hashed fingerprints are bit-
strings derived directly from the connection table
and were developed primarily for database searching.
They differ from structural keys in that they do not de-
pend on pre-selected structural fragments to perform
the bit assignment. Instead, every pattern in the mole-
cule up to a predefined path length is systematically
enumerated. The resulting set of patterns serves as
input to a hashing algorithm that turns ‘on’ a small
number of bits at pseudo-random positions in the bit-
string. Because the number of possible patterns far
exceeds the length of the fingerprint, many patterns
are mapped onto a single bit. In practice, this does not
pose a problem for database searching. Every bit that
is set in a fingerprint of the target pattern will also be
set in that of a molecule which contains the pattern,
making database screening deterministic and fast. For
similarity comparisons, this is not the case. While two
different molecules may have exactly the same finger-
print, the probability of this occurring is extremely
small for all but the simplest cases. Experience has
shown that the similarity between two fingerprints is
a good indicator of the similarity between the two
structures. Hashed fingerprints have the additional
characteristic that as structures become more com-
plex the density of encoded information increases. A
number of studies have shown that fingerprints and
substructure keys are equally effective for the purpose
of diversity analysis (see section Descriptor Validation
below).

While most of the descriptors require an enumer-
ated structure (i.e. the full connection table of a mole-
cule), for combinatorial libraries, this is not strictly
necessary. Downs and Barnard [16] have recently
presented an elegant method to compute molecular
fingerprints based on reaction precursors, using tech-
niques developed for Markush structure handling in
chemical patents.

A number of similarity metrics have been proposed
for binary descriptors [6]. The most frequently used
ones are the normalized Hamming distance:

H = |XOR(x, y)|
N

(1)
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wherex and y are two binary sets (encoded mole-
cules), XOR is the bitwise exclusive OR operation (a
bit in the result is set if the corresponding bits in the
two operands are different), andN is the number of
bits in each set. The result,H , is a measure of the num-
ber of bits that are dissimilar inx andy; the Tanimoto
or Jaccard coefficient:

T = |AND(x, y)|
|IOR(x, y)| (2)

where AND is the bitwise AND operation (a bit in the
result is set if both of the corresponding bits in the
two operands are set) and IOR is the bitwise inclusive
OR operation (a bit in the result is set if the either of
corresponding bits in the two operands are set). The
result,T , is a measure of the number of substructures
shared by two molecules relative to the ones theycould
have in common; and the Dice coefficient:

T = 2|AND(x, y)|
|x| + |y| (3)

Another popular metric is the Euclidean distance
which, in the case of binary sets, can be recast in the
form:

E = √N − |XOR(x,NOT(y))| (4)

where NOT(x) denotes the binary complement ofx,
and the expression|XOR(x, NOT(y))| represents the
number of bits that are identical inx and y (either
1’s or 0’s). The Euclidean distance is a good measure
of similarity when the binary sets are relatively rich,
and is mostly used in situations in which similarity
is measured in a relative sense. Of all the indices de-
fined above, Tanimoto is perhaps the most commonly
used. As we will see below (section Descriptor Val-
idation), these simple binary descriptors, when used
with an appropriate clustering methodology, have been
surprisingly successful in discriminating active from
inactive compounds.

Molecular holograms
Molecular holograms are an extension of hashed fin-
gerprints that are based on fragment counts rather than
simple yes/no information alone. As such, they are en-
coded as relatively short vectors of integers rather than
bitstrings. As a consequence, much more information
about fragment patterns in the molecule is retained
upon hashing. Holograms can also incorporate struc-
tural information that ordinary fingerprints can not,

such as branching, cyclic structures, hybridization pat-
terns and chirality [74]. They have proven quite useful
in QSAR studies [75] and once a QSAR model is in
hand, can be used to screen databases of compounds
which are likely to be active.

Atom pairs and topological torsions

Atom pairs and topological torsions are two related
types of descriptors which represent another attempt to
eliminate the subjectivity inherent in substructure keys
[17]. Atom pairs are patterns of the formai − d − aj ,
whereai andaj are the types of atomsi andj , respec-
tively, andd is the topological distance between the
atoms (the number of bonds along the shortest path
connecting these atoms). A molecule withN atoms
hasN(N − 1)/2 atom pairs, although some of them
may not be unique. Topological torsions take the form
ai − aj − ak − am, wherei, j , k andm are sequen-
tially bonded atoms, andai is again the type of the i-th
atom. Originally, atoms were assigned types based on
atomic number, number of neighbors and number of
π-electrons. More recent studies have utilized physic-
ochemical properties [18] and geometric features [19]
as well. Physicochemical atom pairs include bind-
ing properties, atomic logP contributions and partial
atomic charges. Binding properties categorize atoms
into seven classes: anions, cations, neutral hydrogen
bond donors, neutral hydrogen bond acceptors, polar
atoms, hydrophobic atoms, and other. Geometric atom
pairs are similar to the regular atom pairs with the ex-
ception that the topological distance is replaced by the
through-space distance of the corresponding atoms in
some low-energy conformation of the target molecule.
Geometric and topological atom pairs are equally ef-
fective in similarity searching, but the new generation
of descriptors seem to perform worse than the original
ones in their overall ability to discriminate biologically
active from inactive compounds. As one would expect,
which set does better than another varies greatly from
probe to probe, and is very difficult to predicta priori.

The similarity between two structures described by
atom pairs or topological torsions is measured by:

s(i, j) =
∑K
k=1 min(fik, fjk)

0.5
[∑K

k=1(fik +
∑K
k=1 fjk

] (5)

wherefik is the count of thek-th descriptor in thei-th
structure, andK is the union of all unique descriptors
in i andj . This index ranges from 0 to 1, with 1 indi-
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cating complete identity and 0 indicating that the two
structures have nothing in common.

Atom layers
Martin et al. [8] developed the concept of atom layers
in an attempt to account for the topological distribu-
tion of chemical features around a combinatorial core
that are believed to play a critical role in receptor
binding. Atom layers are based upon the premise that
atoms of a substituent which are close to the point of
attachment to the core contribute differently to binding
than those that are more distant. They are constructed
by summing a given property over all atoms in a sub-
stituent at a given number of bonds distant from the
attachment point. Properties considered by the Chi-
ron group were atomic radius, acidity, basicity, the
ability to serve a hydrogen bond donor or acceptor,
and aromatic character. The similarity between two
substituents was computed by comparing the corre-
sponding atom layer tables element by element, and
dividing the sum of the minimum by the sum of the
maximum values in each cell.

2D autocorrelation vectors
Moreau [20] has proposed an autocorrelation function
to encode the topology of a molecular graph:

A(d) =
∑
i,j

pipj (6)

wherepi andpj represent the values of an atomic
property at atomsi and j , respectively, andd is
the topological distance between the two atoms mea-
sured in bonds along the shortest path. The function
has the useful property that no matter how large and
complex the molecule, it can be encoded in a fixed-
length vector of small rank. Typically, only path
lengths of 2 to 8 are considered. Atomic properties
that have been encoded using this method include vol-
ume, electronegativity, hydrogen bonding character
and hydrophobicity. Originally, a separate autocorre-
lation vector was computed for each property, and the
resulting set was reduced into a smaller number of
variables using principal component analysis.

Topological autocorrelation vectors were also used
by Gasteiger [21] as input to a Kohonen network
which successfully separated dopamine from benzo-
diazepine receptor agonists, even when these com-
pounds were embedded in a large and diverse set of
chemicals extracted from a commercial supplier cat-
alog. Gasteiger [22] has also extended the concept to

three dimensions, by introducing a spatial autocorrela-
tion vector based on properties measured on the mole-
cular surface. These spatial autocorrelation vectors
were used to model the activity of 31 steroids against
the corticosteroid binding globulin, and the cytosolic
Ah receptor activity of 78 polyhalogenated aromatic
compounds. These descriptors were also found to be
effective in describing the diversity of combinatorial
libraries, also through the use of Kohonen networks
(see section Self-Organizing Maps below) [23].

B-Cut values

B-Cut values were developed by Pearlman [24] as an
extension of Burden’s concept of molecular identifi-
cation numbers [25] to multiple dimensions. Burden
represented the hydrogen-suppressed connection table
of a molecule as a symmetric NxN matrix in which
atomic numbers were placed in the diagonal elements
and the off-diagonal elements were assigned a value
of 0.1 times the nominal bond order if the correspond-
ing atoms were bonded or 0.001 if not. An additional
score of 0.01 was added to the (off-diagonal) ter-
minal nodes. A molecular identification number was
then calculated from the two lowest eigenvalues of the
matrix. Rusinko and Lipkus used molecular identifi-
cation numbers for similarity searching of a 60 000-
membered subset of the CAS registry. They found this
method compared well with results obtained from an
established similarity searching procedure.

Pearlman broadened this approach to include prop-
erties deemed significant to protein-ligand binding.
Three classes of matrices were constructed placing
atomic charge, polarizability and hydrogen bonding
characteristics in the diagonal elements and a combi-
nation of interatomic distances, overlaps, computed
bond orders in the off-diagonal elements. A six-
dimensional property space was then defined using
the lowest and highest eigenvalues (B-Cut values)
of a representative matrix from each of these three
classes. Optimal combinations of on- and off-diagonal
properties were selected by their ability to produce
a uniform distribution of molecules in the property
space, as determined by aχ2 criterion. The resulting
six-dimensional space is small enough to permit diver-
sity analysis based on partitioning (binning). This is
described in greater detail below (section Partitioning
Techniques). Pearlman concluded that B-Cut values
based solely on the connection table were proven
satisfactory for most diversity profiling tasks.
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Three-dimensional descriptors

3D structural keys

Geometric structural keys are direct analogues of topo-
logical (two-dimensional) substructure keys in three
dimensions. They are binary sets tailored to mini-
mize compound retrieval time from three-dimensional
molecular databases [26,27]. Typically, the keys en-
code the Euclidean or angular distance between pairs
of selected features such as atom types, centroids of
aromatic rings, ring normals, or attachment points of
functional groups. The distance between the members
of the pair is divided into a fixed number of ranges
and a bit is assigned for each range. In forming a key,
if a molecule contains a pair of selected features, the
distance between the members of the pair is calculated
and the bit corresponding to the range into which the
distance falls is set.

The success of 3D structural keys, or any three-
dimensional descriptors, depends upon their ability
to account for the possibility of multiple molecu-
lar conformations. Early implementations of three-
dimensional molecular database systems stored mole-
cules as single low-energy conformations, determined
experimentally through X-ray crystallography or cal-
culated using a fast structure-generation software
package [28]. Later implementations employed con-
formational search procedures, but, in the interest of
speed, these searches were relatively crude and did
not rule out highly improbable conformations. Other
problems associated with 3D structural keys are poor
representation of shape and chirality, and the limit to
the number of features that can be encoded in a finite
length string. Shape and chirality are concepts that
are undefined in the single dimension defined by a
pair of features. To overcome these limitations, several
groups have developed a related class of descriptors
defined by sets of three or four selected features,
known as 3D pharmacophore keys.

3D pharmacophore keys

Pharmacophore keys, introduced by Sheridan and co-
workers [29], are 3D structural keys which incorporate
features of functional importance to macromolecu-
lar recognition including hydrogen bond donors and
acceptors, centers of positive charge, aromatic ring
centers and hydrophobic centers. A pharmacophore is
defined as a combination of 3 or 4 such loci, forming a
triangle or tetrahedron, respectively, and is character-
ized by the set of distances between the loci. As with

structural keys, the distances are divided into ranges,
and a bit is assigned to each range.

As is the case for structural keys, pharmacophore
keys can be readily extended to account for mul-
tiple conformations. Additionally, because pharma-
cophores are two- and three-dimensional objects, they
are able to capture information on molecular shape and
chirality. Three-point pharmacophore keys also lend
themselves well to visualizationvia three-dimensional
scatter plots (see section Visualization without Dimen-
sionality Reduction below). Sheridan’s original work
has been extended by a number of groups, most no-
tably those at Chemical Design [27], Rhone-Poulenc
[30], and Abbott [10]. Davies and Briant [31] have
employed pharmacophore keys for similarity/diversity
selection using an iterative procedure that takes into
account the flexibility of the compounds and the
amount of overlap between their respective keys (see
section Boolean Logic).

Molecular hashkeys
Defining and measuring the three-dimensional surface
properties and similarities of molecules are also the
key to MetaXen’s approach for predicting biological
properties of molecules as well as in determining the
diversity of a population of molecules. Since deter-
mining pairwise surface similarity measurements for
large sets of molecules is computationally prohibitive,
Sage and co-workers have extrapolated the similarity
measure to a novel representation of molecular surface
properties which they called a molecular hashkey [76].
A molecular hashkey is a real-valued vector of fixed
dimension, that is used to represent information about
the surface properties of a molecule. The molecular
hashkey is much smaller than a complete 3D surface
representation of the molecule. The term ‘hashkey’
is borrowed from computer science, and represents a
compact numerical representation of an object that is
used to solve indexing problems by storing objects us-
ing their hashkeys as memory addresses. A molecular
hashkey has the property that molecules with similar
hashkeys will appear similar based on observation of
their surfaces. Molecules with identical surface prop-
erties will have identical hashkeys, independent of the
underlying atomic scaffolding. Given a moleculeM,
its N-dimensional hashkey (H1, H2, . . ., HN ) is com-
puted by calculating its molecular surface similarity to
a set ofN basis molecules. The basis molecules are
in arbitrary fixed conformations.M is flexibly aligned
to eachBi of the basis molecules (B1...N ) to maxi-
mize molecular similarity, and the best match yields
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the similarity value that becomes Hi . The molecular
hashkey has been used successfully in combination
with machine-learning techniques for developing pre-
dictive models of biological properties of molecules.
The hashkey technique has also been used to create
diverse subsets of molecules from a starting popula-
tion by maximizing the molecular hashkey distance
between the molecules in the subset.

Physicochemical and electronic descriptors

Physicochemical properties

Physicochemical properties have long been used to
develop structure-activity relationships. They quantify
a large number of molecular characteristics known to
determine the transport and binding of a drug to its tar-
get. It is natural, then, that the first attempts to quantify
molecular diversity were based upon physicochem-
ical properties. These properties can be calculated
using standard molecular modeling and quantum me-
chanical packages. They include the number of filled
orbitals, HOMO and LUMO energies, standard devia-
tion of partial atomic charges and electron densities,
dipole moment, ionization potential, heat of forma-
tion, total energy, molecular weight, octanol-water
partition coefficient (logP), molar refractivity, van der
Waals volume and surface area, and many others.
Molecular property descriptors have been used for di-
versity profiling by Willett et al. [6,7], Martin et al. [8],
Lewis et al. [9], Brown et al. [10,11], and many others.
They have been extensively reviewed by Kubinyi [12].

Electronic fields

Cramer and co-workers [33] have developed descrip-
tors for combinatorially generated molecules based
upon steric field methods employed in 3D-QSAR [32].
Their procedure attempts to find a representative con-
formation for each substituent group pendant upon a
particular point of variation of a combinatorial tem-
plate. The process begins with a low energy conforma-
tion generated by a model-building routine, which is
then fitted as a rigid body onto the combinatorial tem-
plate using least-squares minimization. The torsional
angles of the rotatable bonds within the substituent
are then sequentially adjusted, starting from the bond
closest to the template, using a simple set of topolog-
ical precedence rules. Once aligned, the steric field
of the substituent group is computed using a CoMFA-
like approach. Two compounds may be compared, for
example, by calculating the root-square-differences in

steric field values summed over all lattice points in the
CoMFA region.

These descriptors have been used to classify 736
commercially available thiols into 231 bioisosteric
clusters, consistent with results obtained using mole-
cules encoded as 2D fingerprints and compared with
the Tanimoto similarity coefficient. While such an
alignment procedure has utility in comparing mem-
bers of a single combinatorial library, it is unclear
how it could be applied to comparison of compounds
which belong to different libraries, to heterogeneous
compound collections, or to libraries having a variable
template.

Affinity fingerprints
Affinity fingerprints represent an entirely different
class of molecular descriptor than those previously
presented. They are based upon the measured affinity
of a molecule for a set of target proteins rather than the
structure of a molecule itself. The resulting vector of
affinities – the affinity fingerprint – may be used in the
same way as structure-derived descriptors to discern
similarities between molecules and to quantify molec-
ular diversity. This functional approach was pioneered
by Terrapin [34], based upon the company’s fluores-
cent polarization high-throughput screening technol-
ogy. The significance of the results depends critically
upon the selection of an appropriate basis set of pro-
teins. The set of proteins must be able to recognize a
wide variety of organic compounds and its members
binding specificities must be uncorrelated. A system-
atic analysis of several hundred candidates resulted in
a set of 18 proteins, which are now used routinely at
Terrapin for screening new compound collections.

Affinity fingerprints provide an empirical way to
assess the molecular diversity of a chemical library.
Kauvar [34], for example, suggests that an estimate of
the diversity of a given set of compounds can be de-
termined based on the maximum separation and most
frequently occurring distance between two affinity
vectors in the collection. Although this is a rather qual-
itative measure, the mathematical nature of the affinity
fingerprint makes possible more quantitative measures
of diversity (see section Compound Selection). From
the standpoint of drug design, affinity fingerprints have
one significant limitation: they do not have the abil-
ity to predict the affinity profile of an untested class
of compounds. It is, however, conceivable that it
may be possible to predict the biological profiles of
tested compounds against new protein targets through
traditional regression techniques.
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Validation

While no generally accepted theoretical definition for
molecular diversity exists, there is agreement on the
criterion for success in choosing descriptors and di-
versity metrics: a successful choice should be able to
discriminate between biologically active and inactive
compounds. The most comprehensive study specifi-
cally designed to address this issue was reported by
Brown and Martin [10] of Abbott Laboratories. What
makes their contribution unique is the size of the data
set used in their analysis. More than 20 000 struc-
tures were analyzed, including three different sets
of compounds tested against monoamine oxidase and
two other proprietary enzyme targets, and a collec-
tion of over 16 000 compounds that were tested over
the years in Abbott’s high-throughput screens. Seven
types of descriptors (MACCS, Unity and Daylight
fingerprints, Unity 3D rigid and flexible descriptors,
and two pharmacophore descriptors developed at Ab-
bott), and 4 different clustering methodologies (Jarvis-
Patrick, Ward, group-average and Guenoche) were
evaluated based upon their abilities to map active and
inactive compounds to different regions of descriptor
space. The results indicated that the two-dimensional
descriptors (the fingerprints) were considerably more
effective than the three-dimensional ones. Among the
clustering techniques, Ward’s hierarchical agglomer-
ative algorithm prevailed. In a follow-up study, they
found that this ranking held for the ability of these de-
scriptors to predict individual receptor-ligand binding
determinants such as hydrophobicity, dispersion, elec-
trostatics, and steric and hydrogen bonding capabil-
ity. These results were consistent with those reported
previously by the Sheffield group [7].

Patterson et al. [35] reported an alternative method
for validating descriptors based on the concept of a
‘neighborhood radius’. Their approach was to plot dif-
ferences in the value of a descriptor against those in
biological activity for a set of related compounds. If
the descriptor is to be useful as a measure of simi-
larity, the resulting plot should exhibit a characteristic
trapezoidal distribution revealing a ‘neighborhood be-
havior’ for that descriptor. The method was applied
to 20 data sets, and 11 descriptors were ranked by
performance. They concluded that 2D fingerprints and
3D CoMFA fields far outperformed physicochemical
properties such as logP and molar refractivity, while
topological descriptors such as connectivity indices,
atom pairs and auto-correlation vectors fell in the mid-
dle of the spectrum. Interestingly, they also found that,

for combinatorially generated molecules, 2D finger-
prints based on the whole molecule performed worse
than those based on the substituents alone. They at-
tributed this to a ‘diluting’ effect due to the presence
of an identical template in each molecule. However,
Patterson’s study considered one descriptor at a time,
and did not account for the possibility of correlations
between two or more descriptors.

Dimensionality reduction

The high-dimensional data representations that are
commonplace in molecular diversity/similarity analy-
ses pose a number of problems. Firstly, as the number
of variables used to describe data increases, the likeli-
hood that some of the variables are correlated dramat-
ically increases. While certain applications are more
sensitive to correlation than others, in general, redun-
dant variables tend to bias the results. Secondly, the
amount of the computational effort needed to perform
the analysis increases in proportion to the number
of dimensions. Finally, visualization of the results
in a concise and intuitive manner rapidly becomes
impossible.

Fortunately, most multivariate data in<d are al-
most never d-dimensional. That is, theunderlying
structureof the data is almost always of dimension-
ality lower than d. To simplify the analysis and rep-
resentation of the data, it is often desirable to reduce
the dimensionality of the space by eliminating dimen-
sions that add very little to the overall picture. We must
stress that none of the methods that will be discussed
here guarantees to extract the most important features
for the application at hand. There is always the pos-
sibility that some critical piece of information is left
behind, buried under a pile of redundancies. Expe-
rience in many different application areas has shown
that, in practice, this situation does not arise often.

This discussion will focus on three main tech-
niques to perform the reduction: 1) principal com-
ponent analysis, 2) factor analysis, and 3) multi-
dimensional scaling. Other approaches such as non-
linear mapping and Kohonen networks are discussed
in greater detail in the section Visualization below.

Principal component analysis
Principal component analysis (PCA) [8,40–41] takes
as its input a set of vectors described by partially
cross-correlated variables and transforms it into one
described by a smaller number of orthogonal variables
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(principal components) without a significant loss in
the variance of the data. Principal components cor-
respond to the eigenvectors of the covariance matrix,
mij , a square symmetric matrix that contains the vari-
ances of the variables in its diagonal elements and the
covariances in its off-diagonal elements:

mij = mji = 1

N

N∑
k=1

(xki − µi)(xkj − µj ) (7)

whereµi is the mean value of variablei:

µi = 1

N

N∑
i=1

xij (8)

andN is the number of observations in the data set.
The eigenvalues of this matrix represent the variances
of the principal components. PCA achieves a reduc-
tion in dimensionality by filtering out the principal
components which contribute the least to the variance
of the data (i.e. those with the smallest eigenvalues)
until the variance reaches some pre-defined threshold,
typically 90–95% of the original value. Finally, the
original data are transformed using Equation (9):

x′ = VT x (9)

whereVT is the transpose of the filtered eigenvec-
tor matrix, x is the input vector in the original co-
ordinate frame, andx′ are the coordinates of that
sample in the transformed frame. The components of
x′, therefore, are linear combinations of the original,
cross-correlated variables.

The main advantage to PCA is that it makes no
assumptions about the underlying probability distri-
butions of the original variables. The primary disad-
vantage is that it is sensitive to outliers, missing data
and poor correlations between variables due to poorly
distributed variables.

Factor analysis
Factor analysis (FA) is a closely related technique that
attempts to extract coherent subsets of variables that
are relatively independent from one another [40]. It is
often the case in science that the variable we are inter-
ested in is not directly observable. However, it is often
possible to measure other quantities that reflect the
underlying variable of interest. Factor analysis is an
attempt to explain the correlations between variables
in the form of underlying factors, which are them-
selves not directly observable, and which are thought

to be representative of the underlying process that has
created these correlations.

Factors are linear combinations of original vari-
ables. They may be associated with two or more
of these variables (common factors) or with a single
variable (unique factors). The specific association be-
tween the original variables and the derived factors
is described in the form ofloadings, which are de-
rived from the magnitude of the eigenvalues of the
covariance matrix. Factor loadings are inherently inde-
terminate. Rotation attempts to put these factors into a
simple position, so that each variable is loaded highly
on one factor, and all factor loadings are either large or
near zero. A number of different rotation methods are
available, including varimax, quartimax, and equimax.
The varimax method maximizes the variance of the
loadings, and is the most widely used.

On the surface, factor analysis and principal com-
ponent analysis are very similar. Both rely on an
eigenvalue analysis of the covariance matrix, and both
use linear combinations of variables to explain a set
of observations. However, in PCA the quantities of
interest are the observed variables themselves; the
combination of these variables is simply a means
for simplifying their analysis and interpretation. Con-
versely, in factor analysis the observed variables are
of little intrinsic value; what is of interest is the
underlying factors.

Factor analysis has been used by Cummins et al.
[42] to reduce a set of 61 molecular properties to 4
factors, which were then used to compare the diver-
sity of 5 chemical databases (see section Partitioning
Techniques below). It was also explored by Gibson et
al. [41] in a comparative study of 100 different hete-
rocyclic aromatic systems, but they concluded that FA
did not reduce the complexity of the analysis, and did
not offer any significant advantages over PCA.

Multi-dimensional scaling

Multi-dimensional scaling (MDS) [65,66] is a posi-
tional refinement technique that attempts to map a
set of points in a high-dimensional space onto one of
lesser dimensionality while preserving, as best as pos-
sible, the pairwise Euclidean distances,dij , between
the points. Each iteration of the procedure consists of
calculating the distances,δij , between each pair of
points in a lower-dimensional trial configuration and,
using a steepest descent algorithm, shifting the posi-
tions of those points so as to create a new configuration
characterized by a smaller sum-of-squares difference
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betweenδij and dij . Two commonly used objective
functions areKruskal’s stress:

S =
√√√√∑

i<j (δij − dij )2∑
i<j δ

2
ij

(10)

and Lingoes’alienation coefficient:

S =
√√√√1−

∑
i<j (δij ·dij )2∑

i<j d
2
ij

(11)

The procedure terminates when the change in the
objective function between iterations falls below a
user-defined threshold.

Using multi-dimensional scaling, the group at
Chiron [8] has shown that the 2048-bit Daylight fin-
gerprints associated with 721 commercially available
primary amines could be reduced to only five contin-
uous variables that reproduced all 260 000 original
pairwise dissimilarities (distances) with a standard de-
viation of only 10%. Similarly, only seven dimensions
were necessary to represent the 642 000 pairwise sim-
ilarities among a set of 1133 carboxylic acids and acid
chlorides to the same precision. Despite its successes,
the substantial computational cost of traditional multi-
dimensional scaling makes the technique inapplica-
ble to large data sets, such as those encountered in
combinatorial library designs.

Compound selection

‘There is nothing wrong with shooting, just as long as
the right people get shot.’

Clint Eastwood, Magnum Force.

Clustering

Clustering algorithms attempt to organize elements of
a set into groups (clusters) based upon selected charac-
teristics. Members of a cluster must be similar to one
another (internally homogeneous) and dissimilar to
members of other clusters (externally heterogeneous).
Because of its long-standing application in determin-
ing molecular similarity, clustering was one of the first
selection methods to be applied to diversity analysis
[6]. In contrast to other selection algorithms, which
are based on statistical theory, clustering is an en-
tirely heuristic approach consisting of four principal
steps. First, a set of molecular descriptors must be
selected and scaled. Second, the distances between

pairs of molecules in the collection are calculated and
collected in a similarity matrix. Third, members are
assigned to clusters by a set of user-defined criteria.
Finally, the clustering is validated by visual inspection
or statistical means.

Clustering algorithms may be classified as hierar-
chical or non-hierarchical based on the way in which
the clusters are formed. The end-result of hierarchi-
cal clustering analysis is a tree, or dendrogram, the
structure of which reflects the organization of all the
members of the collection. The dendrogram may be
created from the top down beginning with a single
cluster which is recursively sub-divided into increas-
ingly smaller groups until each member is a cluster
unto itself (a ‘singleton’). Alternatively, one could be-
gin with singletons and work up the tree by combining
clusters until all the members belong to a single group.
Non-hierarchical clustering (also known as k-nearest-
neighbor clustering) produces a set of clusters based
on some user-defined criteria. The most commonly
used member of this class, particularly for diver-
sity applications, is the Jarvis-Patrick algorithm. This
method begins by determining the k nearest neighbors
of each member of the collection. Members are placed
in the same cluster if they have a user-defined number
of nearest neighbors in common. The major advantage
of this method is its speed; its main disadvantage is its
tendency to generate either too many singletons or too
few very large clusters depending on the stringency of
the clustering criteria.

Willett [7] has performed a systematic evaluation
of four different clustering methodologies – the Ward
and group-average hierarchical agglomerative meth-
ods, the minimum diameter polythetic hierarchical
divisive method, and the Jarvis-Patrick nearest neigh-
bor algorithm – for purposes of determining molecular
similarity. The test set was comprised of 5982 com-
pounds characterized by 13 molecular descriptors. The
results were evaluated by means of simulated property
prediction experiments. Willett concluded that any of
the three hierarchical methods was preferred to the
Jarvis-Patrick (non-hierarchical) algorithm. A subse-
quent study by Brown and Martin has confirmed these
findings [10].

Regardless of the particular algorithm used to clus-
ter the collection, a diverse set is typically created
by selecting one member from each cluster (most
commonly the centroid). The resulting set may be
examined for possible colinearities. If it is found to
be non-orthogonal, suspect compounds are replaced
with other members of the same cluster, and the new
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solution is re-evaluated. This cycle continues until a
quasi-orthogonal set is identified.

Maximin

The maximin algorithm begins with a randomly se-
lected member of a set of compounds and builds a
maximally diverse subset, one compound at a time.
At each step, the compound added to the subset is
that which is farthest from its nearest neighbor in the
subset. While this selection method is conceptually
straightforward and easy to implement, it is imprac-
tical for use with large collections of compounds since
the number of operations scales to the square of the
size of the set. Maximin was first applied to diver-
sity selection by Lajiness [45], and has been extended
by others including Polinsky [46]. Hassan [43] and
Agrafiotis [44] used the maximin criterion itself as
a diversity metric that was optimized via simulated
annealing.

Chapman [47] has recently reported a maximin
algorithm which employs a diversity metric that ex-
plicitly accounts for multiple molecular conforma-
tions. Each molecule of a collection is subjected to
an exhaustive search to identify its lowest energy
conformations which, in turn, are aligned with the
lowest energy conformations of every other molecule
in the collection. Through rigid body rotations, the
alignment procedure attempts to maximize a similar-
ity coefficient which is a measure of the extent of
steric and charge overlap between the two conforma-
tions. At each step of the procedure, the molecule that
most increases the diversity of the selected subset, as
computed using the following equation, is chosen:

D(M) =
∑
m∈M

 ∑
c∈C(m)

min
c′∈C

(d(c, c′))

− T1S(m)
 (12)

whereM is the set of all compounds,C(m) is the set
of all conformers of compoundm, andC the set of all
conformers of all compounds.T1S(m) is an entropic
term proportional to the number of rotatable bonds that
penalizes highly flexible compounds.

Chapman applied this approach to two test collec-
tions, one of which consisted of naturally occurring
amino acids and the other of 1371 commercially avail-
able carboxylic acids. In the case of the amino acids,
the results were intuitive and suggested that the mea-
sure of similarity is indeed a reasonable one. In the

case of the carboxylic acids, the selection compared
favorably to random controls, and identified reagents
that were quite diverse in terms of shape, size and
functionality. While the method is intellectually ro-
bust and intuitive, it remains to be seen whether the
markedly increased computational cost of taking mul-
tiple conformations into consideration is offset by any
advantage over existing techniques.

Stepwise elimination

Taylor [48] has developed a selection method which
sequentially eliminates members from the whole set
rather than building up the diverse subset from a single
compound. Starting with the symmetricN×N simi-
larity matrix, the largest off-diagonal element (i.e. the
most similar pair of compounds) is identified, and one
of the pair of compounds associated with it is elimi-
nated. This process continues until a single compound
is left in the set. This algorithm then sorts the com-
pounds, placing the most diverse molecules at the top
of the list.

Cluster sampling

Cluster sampling is another nearest neighbor selection
algorithm developed by Taylor [48] which, despite its
name, does not explicitly partition a set of compounds
into clusters. Using a minimum similarity threshold of
0.8, the method begins by generating a list of nearest
neighbors for each compound in the set, which are
then merged to form the nearest neighbor table (NNT)
for the entire set. During each iteration, the procedure
selects the compound which occurs most often in the
NNT, which corresponds to the compound situated at
the center of the most densely populated region (clus-
ter) of property space. All the nearest neighbors of
this molecule are then flagged as unavailable for sub-
sequent cycles of selection. The procedure terminates
when all the compounds in the set are either selected
or flagged as unavailable. Both cluster sampling and
stepwise elimination are intuitive and robust proce-
dures, but scale to the square ofN , which makes them
impractical for large data sets.

Experimental design

In an attempt to provide a rational criterion for se-
lecting a maximally diverse subset of amines and
carboxylic acids for use as side chains and capping
groups in N-substituted glycine peptoid combinator-
ial libraries, Martin et al. [8] developed a selection



12

procedure based upon an established method of statis-
tical experimental design known as D-optimal design.
D-optimal design strives to identify a subset of com-
pounds which is both diverse (the inter-compound dis-
tance in property space is maximized) and orthogonal
(the covariances are minimized). The method begins
with the empty set or a set of pre-selected compounds.
At each step, a compound is chosen which maximizes
the determinant of the ‘information matrix’,XT X,
which is equivalent to the volume subtended by the
subset in covariance space. The rows of the design
matrix,X, index the compounds of the subset, and its
columns index either individual properties or higher-
order combinations of properties such as their squares,
cubes or cross products. The procedure terminates
when a pre-determined number of compounds have
been selected. This approach is nearly identical to one
developed previously by Marsili and Saller [49] for the
purpose of selecting multivariate synthetic analogues.

Recent work by Hassan et al. [43] has indicated
that this method tends to increase the rank of the se-
lected subset at the expense of spread. They used a
Monte-Carlo method to maximize a diversity objec-
tive function based on the D-optimal criterion. The
resulting sets of compounds were biased toward the
periphery of the property space. This bias was espe-
cially evident when the number of compounds selected
far exceeded the dimensionality of the space. It must
be noted that the design matrix used in this study did
not include higher-order combinations of properties,
which may partially account for the redundancy of the
results.

Partitioning techniques

Most of the algorithms discussed to this point scale
to the square of the number of molecules in the set
considered, making their use impractical for large
data sets. In attempts to reduce this computational
complexity, a number of groups have investigated sim-
ple partitioning (binning) techniques. Each axis of a
molecular property space is divided into equal seg-
ments, creating a honeycomb of multi-dimensional
cells. Compounds are assigned to the cells based
on their properties. Many diversity-related tasks are
greatly simplified using this approach. For example, a
diverse subset of compounds may be created by select-
ing a pre-determined number of molecules from each
cell. Comparison of two compound collections re-
duces to comparing the number of molecules assigned
to corresponding cells in each collection. However, as

with any partitioning method, the challenge is to mini-
mize the number of discrete cells without having them
become so large as to be useless. Pearlman [24] and
Cummins et al. [42] have addressed this problem by
reducing the dimensionality of the property space.

Pearlman constructed a 6-dimensional space using
eigenvectors corresponding to the largest and small-
est eigenvalues of an optimized set of three matrices
which encoded atomic charge, polarizability and hy-
drogen bonding characteristics (B-Cut values). The
principal shortcoming of this method is that it lacks
a straightforward physical interpretation. Why choose
the extreme eigenvalues? Burden, upon whose work
this approach is based [25], contests that the small-
est eigenvalue contains contributions from every atom,
and therefore reflects the topology of the entire mole-
cule. In addition, there is ample evidence that an ad-
equate representation of molecular diversity requires
substantially more than six dimensions [8]. Cummins
et al. used factor analysis to reduce a 61-dimensional
property space to four factors which accounted for
90% of the variance of five chemical databases (CMC,
MDDR, ACD, SPECS and the Wellcome Registry)
containing in excess of 300 000 compounds. The di-
versity of each data set was computed as the fraction
of the total volume occupied by that set, using a
Riemann-style approach. A trimming procedure was
also employed to eliminate outliers and focus the
analysis on the more densely populated areas of the
feature space. The resulting density functions for two
of these factors are shown in Figure 1.

Stochastic techniques

All of the algorithms discussed thus far select a diverse
subset of molecules from a larger collection, but none
guarantee that the subset will be the most diverse pos-
sible of a given size. Agrafiotis [44,50] and Hassan et
al. [43] have independently proposed using simulated
annealing to select an optimal subset of compounds
based on an objective function which measures the
diversity of any conceivable set of compounds. Sim-
ulated annealing is a global, multivariate optimiza-
tion technique based on the Metropolis Monte-Carlo
search algorithm. The method, as it is applied to mole-
cular diversity, starts with a randomly selected subset
of molecules. At each step, it makes a small change in
the composition of the subset (usually on the order of
1–10% of the constituent members) and evaluates the
diversity of the new subset. If the new subset is more
diverse than the old, it is retained and the cycle begins
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Figure 1. A comparison of the property distributions of five chemical databases using factor analysis.

anew. If it is less diverse, it is not rejected out-of-
hand, but is retained with a probability that is inversely
proportional to difference in diversity between the two
subsets.

Hassan employed the maximin, power-sum and
product functions as diversity metrics, while Agrafi-
otis’ original implementation used maximin and a
volumetric diversity measure of his own device. Al-
though their methods were similar, the motivations of
the two groups appear to be rather different. Hassan
et al. wanted to compare the performance of differ-
ent diversity metrics. Agrafiotis, on the other hand,
was interested in developing a generalized selection
method based on any number of disparate criteria
(e.g. similarity and predicted activity as well as cost
and availability of starting materials or reaction block
design). This requirement was essential since the al-
gorithms were to be used as part of an iterative drug
discovery system known as DirectedDiversityr, in
which the selection criteria would typically differ from
iteration to iteration [51,52]. He later applied this
algorithm to study other diversity metrics with sur-

prising results [53,54] (see the sections on Information
Theory and Cosine Coefficient below), and has also re-
ported evolutionary and genetic variants of this general
sampling approach.

Optimizable K-dissimilarity selection

K-Dissimilarity selection (OptiSim) is a generaliza-
tion [71] of maximin which balances diversity against
representativeness in the selection set. It starts by se-
lecting a compound at random, then examinesK other
compounds chosen at random from the data set, ex-
cluding from consideration any which are too similar
to the initial selection. From among theseK com-
pounds, the one which is most dissimilar to the initial
selection is added to the selection set. At each iter-
ation thereafter, a fresh sample ofK candidates is
compared to the compounds which have already been
selected, and the most dissimilar among them is added
to the selection set; all compounds are considered
once before any candidate is considered twice. The
published application employs the maximin dissimi-
larity criterion (the minimum pairwise dissimilarity of
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the candidate to any compound already in the set) to
identify the ‘best’ candidate from each subset, though
other measures [2] can also be used.

The algorithm scales withK∗M2, whereM is the
number of compounds being selected. The smaller the
sample sizeK, the more representativeness is favored
in the selection set. AsK approachesN , the total
number of compounds in the data set, OptiSim reduces
to maximin. At modest values ofK (2–10), the bal-
ance between representativeness and diversity is very
similar to that seen for selection based on hierarchical
clustering [72]. Multiple passes with different random
seeds are even more efficient (orderP∗K∗M2, for
P passes ofM selections each), and correspond to
selecting multiple representatives from each cluster.
OptiSim is commercially available from Tripos, Inc.
as part of ChemEnlighten [73].

Vector analysis

A couple of groups have reported diversity methods
based on an analysis of the spatial relationships of
intramolecular functionalities. Boyd [56] reported a
method, called HookSpace, that measures diversity
based on the spatial distribution of distances between
user-defined functional groups. In particular, each pair
of functional groups in a given compound was aligned
on thexy plane so that one of the groups was placed
along thex axis with the head atom at the origin,
and the other was positioned on thexy plane, with
the head-to-tail vector pointing in the positivez direc-
tion. Once the alignment was complete, the position
of the head atom of the second group on thexy plane
was recorded. This process was repeated for every
pair of functional groups in each structure, and for
every structure in the database. Thexy plane was
then partitioned into a finite number of cells, and
each cell recorded either the total number of func-
tional groups, or the number of different functional
groups at that position. This permitted diversity mea-
surements by computing the percentage of non-vacant
cells on thexy plane, similar to the method described
by Pearlman. The authors used this approach to com-
pare the structural diversity of the Available Chemicals
Directory (ACD), the Cambridge Structural Database
(CSD), and a benzodiazepam combinatorial library,
using a theoretical reference space. They concluded
that the ACD covered 85% of that space, whereas
the CSD and the benzodiazepam library covered only
34 and 13% of the space, respectively. It is quite
likely, however, that this difference reflects the differ-

ent origins of the three-dimensional structures of these
compounds (computed versus experimental), rather
than the intrinsic functional and geometric diversity of
the two databases.

In a related approach, Bartlett [57] presented a
system that compared the diversity of different combi-
natorial templates using the angles between the bond
vectors connecting the core to the substituent. The
method followed the spirit of the Caveat approach, and
the results were presented in a visual form.

Minimum spanning trees

At a recent conference, Ruppert and co-workers at
Arris presented a novel method of computing mole-
cular diversity based on spanning trees [77]. Their
method, which they named IcePick, measures the dif-
ference between small molecules by comparing steric
and polar features on their (flexible) three-dimensional
surfaces. IcePick compares one molecule to another by
‘turning it inside out’ to form a pocket that perfectly
fits around it (i.e. an ideal protein) and then flexibly
docking the second molecule into the pocket. The fit
is scored by comparing the protein accessible surface
and the vector directions available for both hydrogen
bond donation and acceptance; this is then averaged
over the flexible conformational space of both mole-
cules. From this measure of pairwise dissimilarity,
IcePick computes the intrinsic diversity of a set or li-
brary of molecules using a ‘spread’ metric based on
minimum spanning trees. The most diverse set is the
one maximizing the weight of the minimum spanning
tree. Since flexible three-dimensional docking can be
computationally expensive, a statistical fingerprint-
ing technique was developed to speed the diversity
computation for large libraries.

Information theory

Lin [58] has proposed a diversity metric based upon
the premise that maximizing the diversity of a subset
of molecules is equivalent to maximizing its informa-
tion content. The crux of the approach is the postulate
that every collection of molecules is composed of a
finite number of distinct species, or classes, of mole-
cules, and that the ability to distinguish among these
species can be described as a function of their mutual
dissimilarity. The more distinguishable the species,
the greater their information content of the collection.
The diversity of the collection may then be quantified
using Shannon’s entropy formalism:
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I = Smax− S (13)

where

S = −
N∑
i=1

N∑
j=1

pij lnpij (14)

andN is the number of molecules in the collection,pij
is the probability of finding thei-th molecule in thej -
th species (given some function of their dissimilarity),
andSmax is the maximum entropy of the system.

While the use of information theory seems like a
natural choice, the actual implementation suffers from
a number of disadvantages. In a recent article [53],
we reported that a strict application of this approach
produced extremely unbalanced designs, and clustered
points at maximum separation along the diagonal of
the feature space. We believe that this is due to the use
of the wrong type of ‘information’, and to the implicit
assumption that ideal designs should be equiproba-
ble (i.e. that the pairwise intermolecular dissimilarities
should be as uniform as possible). In a private com-
munication, Lin suggested that our results could be an
artifact of the similarity measure used in our study, but
a detailed response has yet to appear in print. As of
this writing, the debate is still open.

Cosine coefficient

Willett et al. [59] have noted that if the diversity of a
set of compounds,D(A), is defined as the complement
of the mean pairwise intermolecular similarity:

D(A) = 1−
∑N
i=1

∑N
j=1 δ(i, j)

N2
(15)

whereσ(i, j) is the similarity between compoundsi
andj , andN is the number of compounds inA, the
expression can be reduced from one that scales with
the square of the number of compounds in the set to
one that scales linearly by using the cosine coefficient
to evaluate the pairwise similarities. The cosine coeffi-
cient of similarity is defined as the cosine of the angle
between two molecular property vectors:

σ(i, j) = cos(i, j) =∑K
k=1m(i, k)m(j, k)√∑K

k=1m(i, k)
2
∑K
k=1m(j, k)

2
(16)

wherem(i, k) is thek-th component of thei-th atomic
property vector,m(i), andK is the dimensionality

of the space. Substituting Equation (16) forσ(i, j),
Equation (15) reduces to:

D(A) = 1− ac·ac
N2

(17)

where

ac =
N∑
i=1

w(i)m(i) (18)

and the weights,w(i), are given by:

w(i) = 1√∑K
k=1m(i, k)

(19)

Unfortunately, this dramatic improvement in perfor-
mance comes at a significant price. Using the stochas-
tic approach outlined above, Agrafiotis showed that
the method has a tendency to over-sample the principal
axes of the property space [54]. He postulated that this
behavior is an artifact of the simple summation func-
tion used for the dissimilarity metric and the fact that
the cosine coefficient only measures the angle between
two property vectors and ignores their lengths, which
are necessary to measure spread.

Visualization

The ancients built Valdrada on the shores of a lake, with
houses all verandas one above the other, and high streets
whose railed parapets look out over the water. Thus the
traveler, arriving, sees two cities: one erect above the
lake, and the other reflected, upside down. Nothing exists
or happens in the one Valdrada that the other Valdrada
does not repeat, because the city was so constructed that
its every point would be reflected in its mirror, and the
Valdrada down in the water contains not only all the flut-
ings and juttings of the facades that rise above the lake,
but also the rooms’ interiors and ceilings and floors, the
perspective of the halls, the mirrors of the wardrobes ...

Valdrada’s inhabitants know that each of their actions
is, at once, that action and its mirror image, which pos-
sesses the special dignity of images, and this awareness
prevents them from succumbing for a single moment to
chance and forgetfulness.

Italo Calvino, Invisible Cities.

One of the most difficult challenges in data analysis is
to be able to represent whatever complexities might be
intrinsic to the data in a simple and intuitive form. In
fact, one might argue that if the results of an analysis
are unable to be conveyed to a target audience in a
straightforward manner, the analysis, no matter how
thorough, has failed. As will become evident, tradi-
tional methods of data visualization are inadequate to
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represent the extremely large, high-dimensional data
sets common to molecular diversity/similarity analy-
ses. In order to minimize the complexity and shear
number of individual plots needed to visualize this sort
of data, one must attempt to reduce the dimensionality
of the representation. The three techniques described
below, self-organizing maps, multidimensional scal-
ing and non-linear mapping, use different approaches
to achieve dimensionality reduction, while preserving
the topology of the original space. That is, points near
each other in the high-dimensional space are also near
each other in the low-dimensional space.

Visualization without dimensionality reduction

Multivariate data may be visualized up to three dimen-
sions at a time through use of traditional techniques
such as histograms and two- and three-dimensional
scatter plots. Histograms provide a convenient means
of analyzing one variable at a time, but do not reveal
any relationships between variables. Scatter plots are
more effective in this respect, but they become dif-
ficult to interpret if the density of points is high. In
addition, if the number of variables exceeds all but
a handful, the number of plots needed to represent
the data rapidly becomes overwhelming. One partic-
ularly useful type of three-dimensional scatter plot
is a pharmacophore plot, which is used to visualize
the three-point pharmacophore keys (see previously)
present in a molecule or set of molecules. Each phar-
macophore is positioned in the plot according to its
three inter-point distances, is labeled by a symbol
which reflects its type, and is color-coded according to
whether it contains 1, 2 or 3 identical loci. An exam-
ple of such a plot generated using Chemical Design’s
Chem-X suite is shown in Figure 2.

Another interesting approach are the flower plots
of Martin et al. [8] which represent aestetically pleas-
ing variants of the traditional star diagrams used in
multivariate analysis. Flower plots display all the
properties associated with a single compound in one
plot. They are circular bar graphs in which each ‘petal’
of the flower represents a molecular property or de-
scriptor. The value of the property is reflected in the
size of the petal and its sign determines whether the
petal points outward (positive values) or inward (neg-
ative values). In addition, the central sphere is color-
coded according to some additional property such a
biological activity or similarity to a reference com-
pound. Figure 3 shows the flower plot of tyramine,
described by means of five chemical functionality

descriptors, five shape descriptors, five atom-layer
receptor recognition descriptors and the computed
logP.

Because there is a one-to-one correspondence be-
tween the number of compounds and the number of
plots, flower plots are impractical for visualizing large
data sets. Flower plots are particularly useful, how-
ever, in assessing the distribution of properties across
a small collection of compounds, for example, a set of
reagents used in generating a combinatorial library.

Visualization with dimensionality reduction

Self-organizing maps
Self-organizing maps (SOM’s) or Kohonen networks
[64] belong to a class of neural networks known
as competitive learning or self-organizing networks.
They were originally developed to model the abil-
ity of the brain to store complex information as a
reduced set of salient facts without loss of informa-
tion about their interrelationships. High-dimensional
data are mapped onto a two-dimensional rectangular
or hexagonal lattice of neurons in such a way as to
preserve the topology of the original space.

A Kohonen network is trained in the following
manner: Each neuron, i, has an associated vector of
weightsmi = [µi1, µi2, . . ., µiN ], whereN is the di-
mensionality of the original space. A randomly chosen
training sample,x = [ξ1, ξ2, . . ., ξN ], is presented to
the network, and the weighting vectors of all the neu-
rons are adapted to the input sample through use of a
neighborhood functionor smoothing kernel. A widely
used kernel is given in Equation (20):

hci(t) = α(t) exp

(
−‖r c − r i‖2

2σ(t)2

)
(20)

wherec is the neuron whose Euclidean distance to
the input sample is the smallest,r c and r i are the
respective locations of thec-th and i-th neurons on
the lattice (r c, r i ∈ <2), α(t) is the learning rate,
andσ(t) is the width of the function. This process is
repeated until each training sample has been presented
to the network, a phase referred to as a training epoch.
Typically, many training epochs are necessary to com-
plete the training. Upon completion, each neuron is
sensitized to a particular region of the original space.
Samples which fall within the same region, whether
they were or were not included in the original training
set, are mapped onto the same neuron.

Self-organizing maps were first used to visualize
collections of molecules by Gasteiger et al. at the Uni-



17

Figure 2. Pharmacophore plot generated by Chemical Design’s ChemX software suite.

versity of Erlangen [23]. They validated the utility
of the method by showing that it was able to spa-
tially separate two combinatorial libraries designed
by Rebek as potential trypsin inhibitors. The libraries
were created by combining the tetra-substituted xan-
thene and cubane scaffolds shown in Figure 4 with a
common set of 19 L-amino acids. Thus, while their
substituents were structurally identical, the xanthene
library arranged its substituents around a common
plane, while those of the cubane library were arranged
at the vertices of a tetrahedron. In addition, they
showed that a third, adamantane-based library, which
also oriented its substituents tetrahedrally, mapped to
the same region as the cubane library.

Each molecule was described by a 12-dimensional
spatial autocorrelation vector that encoded the elec-
trostatic potential at its surface according to Equa-
tion (21):

A(dl, du) = 1

N

∑
i,j

pipj (21)

wherepi and pj are the values of the electrostatic
potential at two randomly chosen points,i andj , on
the molecular surface andN is the number of dis-
tance bins on the interval [dl, du] (12 in this case).
Two 50×50 neuron Kohonen networks were trained:
the first with the cubane and xanthene libraries, and
the second with all three libraries. As is shown in
Figure 5a, the cubane library (black cells) maps to a
region distinct from that of the xanthene library (light
gray cells). The overlap between the libraries amounts
to only 3% of the total number of neurons, and is con-
fined to the periphery of the cubane cluster. Figure 5b
shows the map created by training the network with
all three libraries. As expected due to their similar
geometry, members of the cubane (black cells) and
adamantane (dark gray cells) libraries mapped onto
the same region of the network which was, again,
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Figure 3. Flower plot of tyramine. There is one petal for each of the five chemical functionality descriptors, five shape descriptors, five receptor
recognition descriptors and the computed logP.
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Figure 4. Combinatorial scaffolds used by Sadowski, Wagener, and Gasteiger: (left) xanthene, (middle) cubane, (right) adamantane.

Figure 5. Self-organizing maps of (a) the xanthene (light gray) and cubane (black) libraries, and (b) the xanthene (light gray), cubane (black),
and adamantane (dark gray) libraries.
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Figure 6. Sammon map of the xanthene, cubane, and adamantane libraries used by Gasteiger et al.

distinct from that of the xanthene library (light gray
cells).

Given the simplicity of their output, SOM’s can be
very effective for visualizing and comparing chemi-
cal libraries, particularly when they are coupled with
advanced, interactive graphical tools.

Non-linear maps

Non-linear mapping is a multivariate statistical tech-
nique that is closely related to multi-dimensional
scaling [67]. Just like MDS, the objective is to ap-
proximate local geometric relationships on a two- or
three-dimensional plot. The difference between MDS
and non-linear mapping is in the minimization pro-
cedure. Sammon’s algorithm is the most commonly
used, but it too does not scale gracefully with the
size of the data set. Self-organized non-linear mapping
is a variant of Sammon’s original algorithm that was
developed by Agrafiotis [44,50] and is based on a self-
organization principle reminiscent of Kohonen’s SOM
training algorithm. This method belongs to the family
of non-metric algorithms, and is therefore applicable
to a wide variety of input data. This is particularly
useful when the (dis)similarity measure is not a true
metric, i.e. it does not obey the distance postulates
and, in particular, the triangle inequality (such as the
Tanimoto coefficient). Although an ‘exact’ projection

is only possible when the distance matrix is positive
definite, meaningful projections can be obtained even
when this criterion is not satisfied.

Non-linear maps were introduced by Agrafiotis
to visualize protein sequence relationships in two di-
mensions [68], and were later employed as a means
of visualizing and comparing large compound collec-
tions, represented by a set of molecular descriptors
[44,50]. The advantage of non-linear maps over Ko-
honen networks is that they provide much greater
detail about the individual compounds and their in-
terrelationships. To provide a direct comparison be-
tween self-organized and non-linear maps, we applied
the Sammon algorithm on the xanthene, cubane and
adamantane libraries that were used by Gasteiger et al.
in [23] (Figure 6). The projection was carried out using
the same 12-dimensional auto-correlation descriptors
and the Euclidean metric as a pairwise measure of
dissimilarity. The resulting map is shown in Figure 6.

The map is sufficiently faithful, as manifested by
a Sammon and Kruskal stress value of only 10 and
8%, respectively. It is evident that the Sammon map is
not only capable of reproducing the sharp separation
between the planar and tetrahedral systems that was
observed in the self-organized maps (Figure 5), but
also revealed a more subtle distinction between the
cubane and adamantane libraries that was not captured
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by the Kohonen network.
While the first application of this technique in-

volved continuous molecular descriptors, the pro-
grams were later extended to include other molecular
representations and molecular similarity metrics such
as substructure keys, hashed fingerprints, Tanimoto
coefficients etc. [69].

Conclusions

‘You will, I am sure, agree with me that if page 534 finds
us only in the second chapter, the length of the first one
must have been really intolerable.’

Sherlock Holmes, The Valley of Fear.

The study of molecular diversity is an evolving field,
fueled by rapid advances in experimental discovery
and an urgent need for rigorous statistical experimen-
tal design. However, despite its conceptual simplicity,
a rigorous mathematical definition remains elusive.
Most approaches developed to date are rooted in the
fields of molecular similarity and QSAR, and some
have shown promise in increasing the hit rates of
combinatorial chemistry experiments. On the other
hand, there are many examples that suggest that di-
versity is serendipity in disguise. Validation is critical,
but it can only come from comparison with appro-
priate control experiments which are hard to design
and too expensive to execute. Although interest in
molecular diversity will continue to grow, we be-
lieve that it will eventually become inextricably linked
with structure-activity correlation and statistical se-
ries design, perhaps giving rise to a new unifying
field devoted to the planning and analysis of massively
parallel experiments.
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