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Chemical genomics approaches are evolving to overcome key problems limiting the 
efficiency of drug discovery in the postgenomic era.  Many of these stem from the low 
success rates in finding drugs for novel genomics targets whose biochemical properties and 
therapeutic relevance is poorly understood. The fundamental objective of chemical 
genomics is to find and optimize chemical compounds that can be used to directly test the 
therapeutic relevance of new targets revealed through genome sequencing. An integrated 
approach to chemical genomics encompasses a diverse set of tools including quantitative 
affinity-based screens, computer-directed combinatorial chemistry, and structure-based 
drug design. The approach is most effectively applied across targets classes whose 
members are structurally related, and where some members are known to have bona fide 
therapeutic relevance. 
Introduction
Variations of the term ‘chemical genomics’ have
been used to describe a diversity of approaches
that address issues in target validation and drug
discovery. The application most relevant to drug
discovery encompasses an integrated approach,
the objective of which is the rapid generation of
drug-like ‘tool’ compounds that can be used to
validate target-based therapeutic hypotheses. In
practical terms, chemical genomics approaches
often focus on a protein target class that can
facilitate a parallel approach to multiple thera-
peutic indications and exploit synergies occur-
ring throughout the drug discovery process.
Chemical genomics approaches to drug discov-
ery are evolving to deal with the unfavorable eco-
nomics associated with coupling the high
attrition rates encountered in early stages of drug
discovery with the difficulty and expense of
proving therapeutic target validity for biologi-
cally uncharacterized targets.

Postgenomic drug discovery
Modern drug discovery focuses on finding small
organic chemicals that act in vivo at defined pro-
tein targets. Targets are selected through a variety
of approaches that attempt to correlate a modu-
lation of specific biochemical activity with a pos-
itive therapeutic effect. Once a target is selected
from the estimated few thousand ‘druggable’
proteins in the human genome [1], an assay sys-
tem is developed to allow screening [2,3] of chem-
ical libraries to find active hits. Active hits are
retested and frequently resynthesized to confirm

activity. Confirmed hits are then modified
through iterative rounds of chemical synthesis to
produce a multiplicity of chemical analogs. If the
analogs of the initial hits have improved potency,
are judged by medicinal chemists to possess
drug-like properties (related ultimately to in vivo
bioavailability, duration of action, and lack of
toxicity), and are related through a structure–
activity relationship that indicates potential for
additional property improvement, the hit is
advanced to ‘lead series’ status. The lead series
then undergoes further rounds of iterative chem-
ical optimization, where improved compounds
are subjected to an increasingly broad set of
in vitro and in vivo tests in order to achieve
desired levels of in vivo potency, desired pharma-
cokinetic properties, and minimization of
adverse toxic effects. There is generally a high
rate of attrition in the initial stages of drug dis-
covery, with only a small fraction of initially
screened targets resulting in compounds that
advance to clinical development status.

The process of target selection implicitly
assumes that a safe and specific modifier of the
target protein will produce a therapeutically use-
ful agent. However, as the pharmaceutical indus-
try has moved from developing drugs against
relatively well-understood protein targets, to a
plethora of newer ‘genomics’ targets, the devel-
opment of therapeutic proof of concept has
become an increasingly important, if not domi-
nant, risk factor in drug discovery. The pharma-
ceutical and biotechnology industries have
developed a number of biology-based strategies
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for target validation in order to increase the like-
lihood of therapeutic target relevance and
improve overall attrition rates. Nevertheless, it is
not yet clear whether the high cost of biology-
based strategies applied early in discovery is
repaid by improved economic efficiency in the
overall drug discovery process. Chemical genom-
ics approaches to drug discovery are evolving to
deal with the unfavorable economics associated
with coupling the high target attrition rates
encountered in early stages of drug discovery
with the difficulty and expense of proving thera-
peutic target relevance using indirect methods.
Instead, chemical genomics approaches focus on
efficient strategies for generating drug-like tool
compounds that can be directly evaluated in bio-
logical models to test the therapeutic relevance of
a target hypothesis.

The role of chemical genomics
The term ‘chemical genomics’ and related terms
(e.g., chemical genetics, chemogenomics) have
been applied to a diversity of approaches that use
chemical compounds to probe biological systems
[4,5]. While all of the approaches have at least
peripheral relevance to drug discovery, the meth-
ods can be differentiated according to the extent
to which they employ a stochastic versus directed
approach to drug discovery, and how directly
they are coupled to the development of a thera-
peutic proof of concept. The following discus-
sion focuses on approaches that are most directly
associated with the drug discovery process. We
refer the reader to other reviews [4-7] for a more
extensive discussion of the uses of chemical
genomics tools for biological research.

Stochastic approaches
Stochastic approaches to biological discovery
using chemistry are exemplified by ‘chemical
genetics’ methods that examine the global bio-
chemical, phenotypic, or genotypic response of a
biological system when exposed to a foreign
chemical agent [4-7]. In a fundamental sense,
these methods are modern descendants of the
classical drug discovery paradigm that screened
natural products using in vivo biological models.
This classical approach to drug discovery has
produced many pharmaceutically useful agents
in the absence of any knowledge of their specific
molecular target. In the modern context of ‘for-
ward chemical genetics’ [4] (Figure 1), the
approach is enabled by powerful new tools that
can identify specific molecular targets or corre-
late changes in a cellular phenotype or genotype

to classify biochemical activity in vivo [8]. One
manifestation of this approach contemplates the
results of testing a large set of diverse chemical
compounds against a correspondingly large sub-
set of isolated proteins encoded by the human
genome in order to find chemical compounds
that can be used in vivo to investigate biochemi-
cal pathways [4-9]. Although a number of experi-
mental approaches have been developed that
allow high-throughput and direct measurements
of drug binding to target proteins [3,10], there is a
substantial component of serendipity attached to
the collection of useful data using this approach.
In addition, there are practical limitations on the
expression and presentation of target proteins in
high-throughput binding formats that can
present potential ambiguities in interpretation of
the results, particularly for proteins of unknown
function or biochemical status (e.g., whether the
protein target is activated through post-transla-
tional modification, the proper cofactors or
allosteric effectors are present, binding properties
are altered by protein or ligand immobilization
chemistry etc.).

A second stochastic approach examines
changes in gene expression that occur when nor-
mal, diseased, or engineered cell types are
exposed to chemicals. Practical applications of
this approach include the development of gene
expression profiles that can be used to predict
drug toxicology (due, for example to the upregu-
lation of various liver enzymes) and the detection
of other drug-related ‘off-target’ effects. There is
optimism that by developing cellular expression
fingerprints associated with compounds having
known toxicological properties or mechanisms, it
will be possible to predict the in vivo toxicologi-
cal profiles of new compounds in advance of
extensive animal toxicological testing [11,12] and
to potentially develop higher throughput or pre-
dictive methods for general compound ADMET
(absorption, distribution, metabolism, excre-
tion, toxicology) properties. Although stochastic
approaches using binding screens and or expres-
sion profiles as readouts can assist in target dis-
covery, successful interpretation of the results
requires substantial contextual information in
order to assign a biochemically plausible role for
the putative target, particularly if the results sug-
gest a previously unknown biochemical function.

Target discovery using focused chemical 
approaches
More focused chemistry-based approaches to
target discovery and/or validation probe tissue
Pharmacogenomics (2003)  4(3)
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level, localization or pathway organization asso-
ciated with a specific class of potential drug tar-
get. Generally, the chemical probes are directed
to a target class by virtue of specific reactive
chemistry at the active or cofactor binding site.
Several examples of this ‘reverse’ approach
(Figure 1) have appeared that probe the expression
level or cellular localization of enzymes generated
during a pathological response as well as the role
played by specific kinases in cellular signal trans-
duction. Greenbaum et al. [13,14] report the use
of fluorescently labeled epoxide inhibitor librar-
ies in order to profile the level of cysteine pro-
teases in complex cell extracts. Linking the
inhibitor to biotin enabled the subsequent isola-
tion of labeled proteins and their identification
using mass spectrometry. Jassani et al. and Kidd
et al. [15,16] pursue a similar objective by using
biotinylated fluorophosphonate inhibitors to
examine serine protease activity profiles in nor-
mal and invasive tumor cell lines. The former
study identified well known tumor-associated
proteases such as urokinase, as well as a novel

membrane associated hydrolase as an important
marker for tumor progression.

While the former approaches use chemical
probes with broad activity against an enzyme
class to provide evidence of expression level or
tissue localization, approaches have also been
developed to probe more specific biochemical
functions, often by focusing on an individual
member within a broad target class. Chan et al.
[17] report the use of rapamycin, an immunosup-
pressive antibiotic, to study the global interac-
tions and control functions of TOR, a protein
kinase essential for cell growth. The strategy
involved the measurement of the rapamycin sen-
sitivity of over 2000 Saccharomyces strains for
which individual proteins in the yeast genome
were systematically deleted. The authors
observed that over 100 mutants, clustering
around eight broad cellular functions, exhibited
the rapamycin sensitivity phenotype, indicating
a wide range of roles for the TOR protein in cell
regulation. Shokat and co-workers [18] have
developed a hybrid approach to investigate the
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specific roles of protein kinases, a family of
enzymes with several hundred members [1] that
play key regulatory roles in many cell signaling
pathways. In this approach, the ATP binding site
of the target kinase is modified through site-spe-
cific mutagenesis, so that it will function only in
the presence of a cognately modified cofactor
ATP analog. The approach achieves its generality
through the relative structural similarity of the
ATP binding site among kinases, which allows
the introduction of the site-specific modification
into different kinases as desired to study their
function in vivo. The method has important
applications in pathway-based target identifica-
tion, and also in chemical genomics profiling to
determine the effects of specific kinase inhibition
on gene expression profiles.

Chemical genomics as an integrated 
approach to drug discovery
The third application of chemical genomics
focuses on the operational objective of rapidly
discovering and optimizing chemical com-
pounds to verify the ‘druggability’ and therapeu-
tic validity of a drug target through direct testing
in a suitable cellular or animal disease model.
Unlike the approaches described above, which
focus on aspects of target discovery and usually
rely on a single experimental method, this
broader definition of chemical genomics reflects
an integrated approach that typically couples
multiple technologies to rapidly identify and
optimize drug-like compounds that can be used
to test a therapeutic hypothesis in vivo. Although
incorporating multiple technologies, chemical
genomics approaches usually focus on a specific
target class in order to exploit technical synergies
and provide a parallel approach to the develop-
ment and differentiation of drugs directed at
multiple targets within the class [19].

There are three central components of an inte-
grated chemical genomics platform. The first
component is a molecular screen used to find
initial hits, and ideally, also suitable for subse-
quent optimization of target binding affinity.
Although classical drug screening programs
often rely on enzymological, ligand displace-
ment, or functional cellular assays to detect
active compounds, many targets identified
through genomics approaches are relatively
uncharacterized biochemically. Quantitative lig-
and affinity methods are particularly suited to a
chemical genomics approach for such targets
because they do not rely on knowledge of the tar-
get biochemistry either to implement the screen

or to subsequently optimize ligand-binding
affinity. Many of the targets emerging from
genomics studies are uncharacterized enzymes or
members of receptor classes where it is unclear
whether the target is able to bind small drug-like
molecules with high affinity (i.e., whether they
are ‘druggable’). Direct binding assays provide a
general way to screen for high affinity, small
molecule drug leads, thus providing a direct test
of ‘druggability’ for such targets. Direct affinity
screens are generally based on the detection of
some difference in the physical properties of a
protein target when a screening compound is
bound. There are several examples of high-
throughput methods that have been used with
some effectiveness in drug discovery programs.
One method uses capillary electrophoresis to
detect changes in the mobility of target protein
in an applied electric field when it binds a ligand
[101]. An alternative approach incubates the tar-
get protein with a mixture of compounds and
uses a chromatographic column to separate the
target protein together with any bound ligands.
The target–ligand complexes are then heated to
drive off the small molecules so that they can be
analyzed and identified using mass spectroscopy
[20,21]. This approach is particularly effective for
screening hits from pooled compound libraries.
A third approach measures the thermal stabiliza-
tion that occurs when ligands bind to proteins
[22]. The latter approach, which corresponds
essentially to a miniaturized form of differential
scanning calorimetry [23], requires somewhat
more protein to conduct a screening campaign of
several hundred thousand individual compounds
than the capillary electrophoresis or mass spec-
troscopy methods. Nevertheless, the thermal
shift method (Figure 2) has several unique advan-
tages relative to other affinity screens. These
include its very wide dynamic range, enabling its
use for both initial screening and later stage lead
optimization, and its utility as a secondary screen
able to identify the molecular mechanism of
inhibition [24].

A second required component of a modern
chemical genomics platform is an efficient
means of generating initial chemical screening
libraries and subsequently optimizing hits
obtained into drug-like compounds. Combina-
torial chemistry, particularly as implemented
through the parallel synthesis of individual com-
pounds obtained by reacting diverse reagents
with a common scaffold, has become a mainstay
technology throughout pharmaceutical discov-
ery. Nevertheless, to be effective, combinatorial
Pharmacogenomics (2003)  4(3)
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chemistry has to be highly focused to find the
few useful compounds among the vast number
that are potentially accessible through random
combinatorial synthesis (Figure 3). Given the scale
of the accessible chemical space, there is a trade-
off between generating libraries with the maxi-
mum drug-like diversity [25-28] versus libraries
that are more focused on specific druggable tar-

get classes [29-32]. In either case, chemi-informatic
computational approaches are required to tailor
the design of combinatorial libraries so that they
simultaneously co-optimize disparate properties
required both for target potency and ultimate
pharmaceutical development. Sophisticated
chemi-informatic approaches can co-optimize
diverse properties such as compound molecular

al shift method.
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weight, computed solubility, density of hydrogen
bond donor and acceptor groups, requirements
to fit a predefined set of structural criteria (deter-
mined by either the target active site structure or
pre-existing structure–activity data on active
compounds), and heuristic models of com-
pounds ADMET properties, as well as practical
constraints on defining the most efficient matrix
synthesis strategies [33]. In addition, an extensive
set of peripheral chemi-informatics computa-
tional tools are required to monitor compound
production, quality control, database registra-
tion, biological testing, and data mining activi-
ties that drive the iterative process of drug
property optimization [33].

Structural biology [19,34] constitutes the final
key component of an integrated chemical

genomics platform. Recent years have seen the
advent of numerous technological advances
impacting virtually all aspects of the 3D struc-
ture determination of proteins using both X-ray
crystallography and NMR spectroscopy. 3D
structural data has been used both for ab initio
drug design and to aid virtual screening of com-
pound libraries using computational docking
approaches [35]. Both crystallography and NMR
have also been used to physically screen com-
pounds through X-ray analysis of target crystal
structures which have been infused with screen-
ing compounds [36], or by analysis of target
NMR data that can detect compound binding in
solution [37]. Structure-based design uses the 3D
structure of the target protein as a basis for
designing drug molecules ab initio [35], or more

illustrates how successive rounds of optimization were directed to converge in chemical 
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ships between chemical structures in multi-parameter spaces.
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usually, structural analysis of its complexes with
drug leads as the basis for iterative chemical
modification of compounds with improved
properties [38]. X-ray crystallography has proved
to be particularly useful in the design and opti-
mization of combinatorial library strategies [39,40]

for several of the major classes of druggable tar-
gets including proteases [41] and kinases [42]. The
3D structure of one family member, together
with homology models of other family members,
can furnish a template for library design applica-
ble to the broader target class (Figure 4). As phar-
maceutical companies increasingly focus on
discovering drugs for newly identified members
of established target families, there is increased
emphasis on strategies that can enhance drug
selectivity for a defined target versus related
members of the family. Structural analysis and
3D homology modeling of multiple family
members within a target family play an increas-
ingly important role in defining synthetic strate-
gies to produce drugs acting specifically at a
defined target.

Expert opinion
Until recently, the pharmaceutical industry con-
centrated it efforts on ∼ 500 protein targets with
relatively well known biochemical functions and
properties [43]. The revolution in genome
sequencing that has occurred over the last decade
has now defined virtually all of the potential tar-
gets for small molecule therapeutics [1]. This
knowledge was initially envisioned to provide
unprecedented opportunities for the discovery of
new drugs with novel modes of therapeutic
action. Nevertheless, this potential has yet to be
realized and many reports now recognize that the
overall productivity in the pharma industry has
remained essentially constant over the last
10 years, despite a major increment in research
and development investment [44-46]. Although
there are many factors that impact pharma pro-
ductivity, it is clear that much of the lost produc-
tivity can be attributed to the basic failure of new
technology to make the discovery process more
efficient. Although there has been a vast increase
in the quantity of information obtained through
genomics approaches and other technological
advances, the translation of this information into
effective discovery strategies (as opposed to inter-
esting science) has proved elusive. Basically, these
causes relate to the nature of ‘genomics’ targets,
where relatively little may be known about the
biochemical mechanism or biological function
of a target protein, owing to its initial identifica-

tion through upregulation in a disease context or
from biological effects in a shotgun gene knock-
out experiment. As a consequence of this
‘reverse’ approach to drug discovery (Figure 1), a
major preoccupation of the biotechnology and
pharma industry has been to establish strategies
by which targets can be biologically validated to
demonstrate genuine therapeutic utility. What-
ever the specific methodology, the biological val-
idation process for novel targets is complex and
expensive. Consequently, it is not surprising that
the broad application of such methods in the
early, high-risk stages of drug discovery, where
the majority of target attrition occurs, leads to
greatly increased discovery costs.

While the loss of effectiveness owing to the
expenditure of resources in early target validation
is difficult to quantify at the technical level, sev-
eral publications [47-50] have recently appeared
that test other basic assumptions that have moti-
vated recent massive investments by pharma in
drug discovery technology. For example, the
trend towards very high-throughput screening
with large chemical libraries seems to have fallen
well short of expected productivity gains. The
technical compromises (which frequently lead to
screens being conducted under biochemically
irrelevant conditions) and loss of precision that
occur on adaptation of many assays for high-
throughput platforms create high error rates that
make hit follow-up by synthetic chemistry teams
a very inefficient and frustrating process. The sit-
uation is exacerbated by the influx of targets
from genomics where there is generally less
known about basic target biochemistry, making
the interpretation and relevance of screening
results substantially more ambiguous than
screens conducted on target classes whose bio-
chemistry is better understood. There seems to
be a major need to develop high quality second-
ary screening methods to sort out the genuinely
useful hits obtained from large-scale screening
campaigns and also to perform rapid biochemi-
cal characterization defining hit mechanism of
action [24].

A final factor frustrating productivity con-
cerns the need for better ways of managing and
mining the vast quantity of very noisy data
emerging from genomic and other high-
throughput technologies [49]. The solution to
this problem is complex owing to the diversity of
the data encountered in the discovery process
and the many difficulties associated with the
integration of geographically distributed and dis-
parate databases.
7
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Chemical genomics is evolving to address key
issues posed by the sharp decrease pharmaceuti-
cal productivity that has occurred in the postge-
nomic era. This situation has arisen from the
cost and difficulty of verifying the therapeutic
utility of novel targets at the earliest stages of
drug discovery where target attrition rates are
high. An integrated chemical genomics approach
focuses on the rapid generation of a potent drug-
like compound that provides therapeutic target
validation in a cellular or in vivo model of dis-
ease. This approach offers improvements in effi-
ciency versus many current strategies for drug
discovery, since it applies key biological resources
at a stage in the process where many of the com-
mon attrition factors (e.g., target druggability,

target specificity, cell permeability etc.) will have
already been addressed.

An emerging paradigm for drug discovery in 
the postgenomic era
Figure 5 outlines a practical embodiment of a
chemical genomics platform for drug discovery.
The platform reflects a comprehensive approach
to the discovery and optimization of multiple
compounds interacting with different members
of a druggable target family where the possibility
exists to develop new therapeutic modalities.
Well known examples include proteases [1,13-

16,29], kinases [1,19,31], and nuclear hormone
receptors [1,51,52]. 3D structural data from a rep-
resentative target family member is used to com-
putationally select or design chemical screening
libraries for physical screening. Multiple target

re determination provides a target class template for combinatorial library generation.

 determination of drugs bound to the target can improve properties through recombination of features from 
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family members that potentially represent alter-
native therapeutic approaches or important
counter screens are cloned and expressed in
quantities sufficient to drive quantitative screen-
ing and 3D structural studies. The parallel clon-
ing and expression of related molecules makes
this process substantially more efficient and reli-
able on a per target basis than approaches
addressing totally diverse targets. A high quality
compound library is screened, using a few hun-
dred thousand drug-like compounds selected for
a combination of structural diversity and target
focus. Screening is performed with a quantitative
binding assay, which ideally has sufficient
dynamic range to allow both initial hit screening
(involving detection of compounds with Ka = ∼
10 µM) and to drive subsequent rounds of
chemical compound optimization (producing
compounds with Ka ∼ nM). A quantitative bind-
ing assay providing direct thermodynamic read-
out [22-24] is able to find drugs that bind to target
active or allosteric sites, to find drugs that bind
cooperatively with small molecule, DNA, or pro-
tein substrates and cofactors, as well as to provide
direct validation of molecular mechanisms of

inhibition. Initial hits are optimized through
chemical elaboration using computer-directed
combinatorial strategies that are able to co-opti-
mize target binding potency, specificity, and a
host of other drug-like properties ultimately
important for successful development. An effi-
cient way to generate optimized compounds is to
select them from a computer database of analogs
of the initial screening library whose synthetic
routes have been preverified and stored in the
database. This allows the selected compounds to
be synthesized and checked for quality using
automated parallel synthesis and analysis meth-
ods. Depending on the stage of compound opti-
mization, a variety of additional experimental
tests can be made on the synthesized compounds
and introduced into the computational optimi-
zation algorithm. These can include compound
solubility, cell permeability, liver enzyme meta-
bolic activity, toxicological expression profile
data etc. 3D structural data for compounds
bound to various targets can also be carried out
in parallel, and this information used to design
new libraries, improve target affinity and specifi-
city, or other ADMET properties ultimately

ng paradigm for chemical genomics addressing a ‘druggable’ target family. 
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The integrated chemical genomics process keys
from the identification of a DNA sequence
inferred to have therapeutic significance in a dis-
ease context. The basic information furnished by
the target sequence facilitates target protein syn-
thesis and the subsequent discovery and optimi-
zation of drug-like ‘tool compounds’ that interact
with the target and can be evaluated in a biologi-
cal disease model to directly test a therapeutic
hypothesis. The approach can be implemented as
a highly parallel process, and is particularly well
suited to the discovery of drugs in broad families,
where inter-target specificity may be a critical fac-
tor in the ultimate development of therapeutic
agents with minimum side effects. The chemical
genomics approach defers investment in biologi-
cal target validation to a later stage in the discov-
ery cycle, where resources can be deployed more
efficiently and with a higher probability of suc-
cess, thus providing a more direct route to effi-
ciently finding new drugs.
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