

DirectedDiversity
Reference

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc.
All rights reserved.

Table of Contents
DIRECTEDDIVERSITY 1

REFERENCE 1

TABLE OF CONTENTS 3

REFERENCE ONE 1

 REACTION LANGUAGE 1

OVERVIEW 1

EXPLODER REACTION SCRIPTING 2

STEREOCHEMISTRY IN REACTION SCRIPTING 7

REFERENCE TWO 15

 COMMAND UTILITIES 15

OVERVIEW 15

REFERENCE THREE 16

 DIRECTEDDIVERSITY® FILE FORMATS 16

OVERVIEW 16

INDEXED ARCHIVES FORMAT 17

MATRIX FILES FORMAT 18

BINARY DISTANCE MATRIX FORMAT 19

STRUCTURE FILES FORMAT 20

ZBI FILES FORMAT 21

REFERENCE FOUR 23

 SMILES 23

OVERVIEW 23

SMILES NOTATION 24

FOR MORE INFORMATION 25

REFERENCE FIVE 27

 SMARTS 27

OVERVIEW 27

ATOMIC PRIMITIVES 28

BOND PRIMITIVES 30

LOGICAL OPERATORS 31

RECURSIVE SMARTS 32

FOR MORE INFORMATION 32

REFERENCE SIX 33

 PERL 33

OVERVIEW 33

WEB SITE 33

REFERENCE SEVEN 35

 PUBLICATIONS 35

OVERVIEW 35

LIST OF PUBLICATIONS 35

Reference One
 Reaction Language

Overview

This reference contains addition information about the reaction language used for reaction
scripting in the DirectedDiversity Browser's Exploder tool.

Specifically, this Reference includes the following sections:

Exploder Reaction Scripting

Stereochemistry in Reaction Scripting

The following table identifies the appropriate section to read in order to learn more about a
specific area.

To learn more about … Read the section…. See page
Writing a reaction script Exploder Reaction

Scripting
2

Writing a reaction script that takes
stereochemistry into account.

Stereochemistry in
Reaction Scripting

7

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 1

Reaction Language DirectedDiversity Release 3.5

Exploder Reaction Scripting
General Syntax Rules

The syntax of the Exploder reaction scripting language is similar to that of the Tcl
programming language (see http://www.scriptics.com/resource/ for more
information on Tcl).
Here are the general syntax rules:
• Semicolons and newlines are command separators.
• The reaction scripting language is case sensitive.
• Identifiers should not include spaces.
• String literals are enclosed in double quotes.
• Comments begin with the # symbol which is not a part of a string and extend to the end

of line.
An Exploder script can contain one and only one reaction scheme definition.

Sample Script

Shown below is a sample script for the reductive amination reaction:

O

R1 H

+
R2

H

N R3 R1 N
R2

R3-H2O

reducing agent, H+

proc amination {libname libfile amines aldehydes} {
 reagent amine;
 reagent aldehyde;
 amine ignore "C(=O)[NH2]";
 amine ignore "C(=O)[NH][C,c]";
 amine define "[C,c][NH2]";
 amine define "[C,c][NH&!a]C";
 aldehyde define "[C,c][CH]=O";
 product p;
 p add amine $amines;
 p add $aldehy ; aldehyde des
 p insert bond aldehyde:1 amine:1;
 p remove atom aldehyde:2;
 p explode $libname $libfile;
}

Reaction Scheme Definition

As it can be seen in the above example, a reaction scheme is defined using the proc
keyword as shown below:

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 2

Reaction Language DirectedDiversity Release 3.5

proc name {library_name library_file r1_file [r2_file ...]} {
 procedure_body
}

where:
name is the reaction script name, typically it reflect the reaction name, e.g. amination.
library_name is a parameter that specifies name that will be given to the generated

library. The Exploder will replace library_name with the name specified by the user.
The name of the library and will be used to construct the names of the products in that
library: each product molecule will be named name-serial_number .

library_file is a parameter that specifies name of the output file for the generated
library. The Exploder will replace library_file with the filename specified by the
user.

r1_file, r2_file, ... are parameters that specify filenames of the reagent sources.
The Exploder will replace the r1_file, r2_file,... arguments with the names of
SDF or SMILES files specified by the user.

procedure_body consists of three parts, a reagent definition, a product definition, and
an execution trigger which will be described below.

NOTE: The opening figure bracket of the script’s body must be on the same line as the
argument list.

Reagent Definition

The reagent definition section of a script specifies the reagents involved in the reaction and
the patterns that identify the reagents:

reagent reagent1
reagent1 define pattern1 [pattern2 ...]

Patterns are specified as SMARTS strings (see Reference Chapter 5. SMARTS) enclosed in
double quotes. It is possible to define several patterns for a single reagent, in which case the
program will attempt to match the patterns in the order they are defined. However, the
sequence number of each atom that participates in the reaction should be the same in all
patterns defined for that particular reagent.

The ignore keyword is used to specify undesirable patterns:

reagent1 ignore ignore_pattern1 [ignore_pattern2 ...]

Then, if the Exploder finds that a fragment of reagent1 matches ignore_pattern1, it
will not use it in the reaction even if this fragment also matches pattern1 specified with
the define keyword. NOTE: patterns are only ignored if the reactive pattern is a subset of
the ignore pattern and not if they just intersect. For instance, in the sample script at the
beginning of the chapter, the following statements

amine ignore "C(=O)[NH2]";
amine ignore "C(=O)[NH][C,c]";

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 3

Reaction Language DirectedDiversity Release 3.5

tell the Exploder not to use primary and secondary amides in the reaction.

Often, a pattern can be mapped onto a reagent in multiple ways. A desired mapping policy for
a reagent can be explicitly specified with the policy keyword followed by one of the
following keywords:
first - only one random mapping is used (this is the default policy),
all - all possible mappings are used (NOTE: Browser will show only one of the products
resulted from multiple mappings. To extract all products from the combinatorial library file
created by the Exploder tool, use the zbimap and molextract command-line utilities),
single - only those reagents that can be mapped unambiguously are used.

reagent1 policy { first | all | single}

A special type of reagent is called an agent. Agent differs from reagent it the way it is
defined. Agent is defined directly in the script (there is no need to provide a source file) and it
can have only one chemical structure associated with it. For example, a fixed scaffold used in
the reaction can be defined as agent:

agent agent1
agent1 define smiles

In all other respects agents are identical to reagents.

Product Definition

The product definition section of a script declares the product and specifies the
transformations of the reagents that lead to its formation. Note: only one product per reaction
can be defined. The steps that can be involved in the product definition are described below.

Declare product p (required):

product p

Add a molecule of reagent1 from source r1 (at least one molecule of a reagent should be
added to form a product):

p add reagent1 $r1

Add a molecule of reagent2 from source r2 to product p:

p add reagent2 $r2

When adding an agent to the product, source should be omitted:

p add agent3

Add an additional molecule of reagent1 to product p and declare the name of that
fragment as reagent1copy, which can be used to refer to that fragment later. Copying a

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 4

Reaction Language DirectedDiversity Release 3.5

reagent molecule is useful when reaction stoichiometry is not 1:1:

p copy reagent1 reagent1copy

Remove the atom a1 of reagent1:

p remove atom reagent1:a1

An atom involved in the transformations is identified by the name of the reagent from which
it comes and its sequence number in the reagent's pattern. For instance, in the sample script at
the beginning of the chapter the following statement

p remove atom aldehyde:2

instructs the Exploder to remove the oxygen atom that comes from the aldehyde reagent
"C[CH]=O". NOTE: Oxygen is the third atom in this pattern, but the atoms are numbered
starting from 0, therefore, its index is 2.

Insert a bond of the order bond_order (single, double or triple; single is the
default) between atom a1 of reagent1 and atom a2 of reagent2.

p insert bond reagent1:a1 reagent2:a2 [bond_order]

Remove a bond between atoms a1 and a2 of reagent1.

p remove bond reagent1:a1 reagent1:a2

Remove attachments to a specified atom.

p remove attachment reagent1:a1
p remove fragment reagent1:a1 reagent2:a2

NOTE: The remove attachment statement removes all substituents attached to the atom
and not mapped by the reagent's pattern. For example, if the reagent r1 is defined as
OC(=O)N and mapped onto O=C(O)CCNC(=O)OCC1c2ccccc2c3ccccc13) (FMOC-β-
ALA), then remove attachment r1:0 would remove the highlighted part of the
FMOC substructure attached to the oxygen atom.

O

ON

O

O

The remove fragment reagent1:a1 reagent2:a2 statement is similar to
remove attachment . It removes the second of two connected atoms and everything else
attached to that atom, whether the removed atoms overlap with the reagent's pattern or not.

Set an atom's property:

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 5

Reaction Language DirectedDiversity Release 3.5

p set atom reagent1:a1 property value

The following atom properties can be set: symbol, atomicNo, radical, charge,
mass, and chirality. Chiral centers can be described as R, S, th (tetrahedral) or al
(allenyl).

Set a bond's property:

p set bond reagent1:a1 reagent1:a2 order/wedge

The bond order can be set to single, double, or triple; the wedge property can be set
to up or down.

Conditional handling of substructures which may or may not be present (e.g. leaving
protecting groups) can be achieved using the if statement. Note that the mapped leaving
group is referred to as pattern. All conditional operations must be placed after the general
reaction definition. For example:

if {[reagent1 contains "*C(c1ccccc1)(c2ccccc2)c3ccccc3"]} {
 product1 remove fragment pattern:0 pattern:1;
};

Execution Trigger

To initiate exploding of the library the following statement must be added at the end of the
script:

p explode $library

The explode statement should be the last statement the script. None of the instructions after
explode will be executed.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 6

Reaction Language DirectedDiversity Release 3.5

Stereochemistry in Reaction Scripting

An important feature of the stereochemical reactions is that a combination of reagents
normally leads to multiple products that are in stereoisomeric relationships with each other.
Specification of the stereochemically preferred product or products (e.g. due to a
stereospecificity or stereoselectivity of the reaction) in the reaction script can be done in a
number of ways.

Foremost, the stereochemical configuration of an atom can be explicitly specified as R, S,
unspecified, racemic or inverse. For example:

product set atom reagent:n configuration R

Configurations R, S, or unspecified indicate a single product of the specified or
unspecified chirality. The racemic configuration indicates a mixture of both R and S
stereoisomers. The inverse specification can be applied to a chiral atom, which exchanges
one of its substituents during the reaction. The correct R/S configuration of the product will
be determined based on the inversion of the original configuration.

Alternatively, the stereochemical configuration of an atom can be specified by listing the
atom’s substituents in a clockwise order and designating last substituent as an up or down
wedge. For example:

product set atom reagentA:n configuration reagentA:n1
reagentA:n2 reagentB:n3 H down

The stereochemical configuration of a bond can be also specified explicitly as cis or trans
or as E or Z. In addition, because often bonds are formed and modified during the reactions
according to a certain mechanism, the stereochemical configuration of a bond can be
specified as a syn_product or an anti_product of the reaction transformations. Note
that it is not always possible to specify a single product by using the syn_product and
anti_product keywords.

The examples below discuss various types of stereochemical reactions and demonstrate how
a desired stereochemical product can be specified in the reaction script.

Addition to a double bond

Use syn_product or anti_product to specify the correct mechanism. For example,
bromination of olefins is an anti-addition (i.e. first bromine atom attacks from one side of the
double bond’s plane, whereas the second atom attacks from the other side). Hence, for each
of the two possible configurations of the double bond (cis or trans), the formation of two
stereoisomers is possible.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 7

Reaction Language DirectedDiversity Release 3.5

Here is a reaction script example:

CH3

H CH3

H Br

CH3 H Br

H
CH3

Br2

CH3

H H

CH3 Br

CH3 H Br

CH3
H

Br2

meso (RS,SR)

d,l (RR, SS)

trans

cis

proc anti_addition {name lib olefins brominating_agents} {
 reagent olefin;
 reagent br2;
 olefin define "C=C";
 br2 define "[Br][Br]";
 product p;
 p add olefin $olefins;
 p add br2 $brominating_agents;
 p insert bond olefin:0 br2:0;
 p insert bond olefin:1 br2:1;
 p remove bond br2:0 br2:1;
 p set bond olefin:0 olefin:1 single anti_product;
 p explode $name $lib;
}

Cyclo-addition to a double bond

Cyclo-addition to a double bond is simply a syn-addition because of the ring constrain.
Therefore, syn_product would specify the correct mechanism.

Here is a reaction script example:

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 8

Reaction Language DirectedDiversity Release 3.5

CH3

H CH3

H CHBr3

CH3

H H

CH3 CHBr3

trans

cis

CH3

H

H

CH3

Br

Br

CH3

H

CH3

H

Br

Br

KOC(CH3)3

KOC(CH3)3

proc cyclo_addition {name lib olefins brominating_agents} {
 reagent olefin;
 reagent bragent;
 olefin define "C=C";
 bragent define "C([Br])([Br])[Br]";
 product p;
 p add olefin $olefins;
 p add bragent $brominating_agents;
 p insert bond olefin:0 bragent:0;
 p insert bond olefin:1 bragent:0;
 p remove atom bragent:3;
 p set bond olefin:0 olefin:1 single syn_product;
 p explode $name $lib;
};

Elimination

Elimination leading to the formation of a double bond can be either a syn-elimination, or anti-
elimination. In the case of syn-elimination, the broken covalent bonds are on the same face of
the formed double bond. In the case of anti-elimination, the two removed substituents are on
the opposite faces of the formed double bond. To specify the desired reaction mechanism, the
syn_product or anti_product keywords are used. For instance, dehydrohalogenation is an
example of an anti-elimination reaction:

KOCH2CH3
threo

Br

H H

CH3

Ph
Ph

H

CH3Ph

Ph

trans

proc anti_elimination {name lib r1s} {
 reagent r1;
 r1 define "[CH]C[Br]";
 product p;
 p add r1 $r1s;
 p remove atom r1:2;
 p set bond r1:0 r1:1 double anti_product;

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 9

Reaction Language DirectedDiversity Release 3.5

 p explode $name $lib;
};

Nucleophilic substitution

Nucleophilic substitution can lead to inversion of the configuration of a chiral center. To
indicate the inversion in the script, the inverse keyword is used. For example:

CH3COOH
OSO2C6H4CH3

CH3

CH3(CH2)5
H

CH3

CH3(CH2)5
H

CH3COO

proc Sn_inversion {name lib r1s r2s} {
 reagent r1;
 reagent r2;
 r1 define "[C&X4]O";
 r2 define "C(=O)O";
 product p;
 p add r1 $r1s;
 p add r2 $r2s;
 p remove fragment r1:0 r1:1;
 p insert bond r1:0 r2:2 single;
 p set atom r1:0 configuration inverse;
 p explode $name $lib;
};

The inverse keyword is also applicable in the situation where the atom inverting its
configuration is not chiral by itself, but forms a stereo pair with another atom. Stereo pair
means that the substituents of the paired atoms can be in a cis or trans (or E or Z)
configuration in respect to the plane of the paired atoms. For example, the reaction script
above would be suitable for the following reaction as well after the redefinition of the second
reagent as r2 define "ccS".

H OSO2C6H4CH3

H C(CH3)3

PhS H

H C(CH3)3

NaSPh

Ring opening

Acid-catalyzed ring-opening of cyclopropylcarbinols leads to the formation of a trans double
bond, which is specified with the trans keyword in the sample script below:

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 10

Reaction Language DirectedDiversity Release 3.5

trans
CH(OH)CH3

H

CH3

H CH2CH2Br

H
HBr

proc ring_opening {name lib carbinols bragents} {
 reagent carbinol;
 reagent bragent;
 carbinol define "C1CC1C(O)";
 bragent define "[Br]";
 product p;
 p add carbinol $carbinols;
 p add bragent $bragents;
 p remove atom carbinol:4;
 p insert bond carbinol:0 bragent:0;
 p remove bond carbinol:0 carbinol:2;
 p set bond carbinol:2 carbinol:3 double trans;
 p explode $name $lib;
};

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 11

Reaction Language DirectedDiversity Release 3.5

Fused ring formation

Addition of phenoxycarbene to cyclohexene is an example of how a syn-addition to an alkene
creates fuzed rings and three chiral centers:

H

OPh
H

H

PhOCH2Cl

In the example below the addition to the double bond is specified to be syn-addition, and the
configuration of the chiral center formed from the phenoxycarbene’s carbon atom is
explicitly defined:

proc alkene_addition {name lib r1s r2s} {
 reagent chexene;
 reagent carbene;
 chexene define "C=CC(C)C";
 carbene define "[Cl]CO";
 product p;
 p add chexene $r1s;
 p add carbene $r2s;
 p remove atom carbene:0;
 p insert bond chexene:0 carbene:1;
 p insert bond chexene:1 carbene:1;
 p set bond chexene:0 chexene:1 single syn_product;
 p set atom carbene:1 configuration H carbene:2 chexene:0

chexene:1 down;
 p explode $name $lib;
};

Note that configuration of the phenoxycarben’s chiral atom is defined by listing substituents
in the clockwise order and specifying whether the last substituent in the list is directed up or
down in respect to the plane of drawing:

H

OPh
H

H

1

0

In fact, the script above is not unambiguous, because cyclohexene’s carbon atoms could be in
either R,S or S,R configurations. In order to specify a single product, the script line with the
syn_product keyword should to be replaced with the following code:

 p set bond chexene:0 chexene:1 single;
 p set atom chexene:0 configuration S;

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 12

Reaction Language DirectedDiversity Release 3.5

 p set atom chexene:1 configuration R;

Addition to Carbonyl Group

Addition to a carbonyl’s double bond can create an asymmetric carbon atom, preferred
configuration of which can often be specified with the set atom ... configuration
... statement. However, in the case of an exocyclic carbonyl, addition to a carbonyl’s
double bond can create a “stereo pair” of atoms:

O

(CH3)C (CH3)C

H

OH
LiAlH4

Cis or trans (or E or Z) configuration of the “stereo pair” can be specified by the special
statement set pair Here is an example of the reaction script using the set pair
statement:

proc carbonyl_addition {name lib chexanones} {
 reagent chexanone;
 chexanone define "C1CCC(=O)CC1";
 product p;
 p add chexanone $chexanones;
 p set bond chexanone:3 chexanone:4 single;
 p set pair chexanone:0 chexanone:3 trans;
 p explode $name $lib;
};

Diels-Alder Reaction
Arguably the most important cycloaddition reaction, the Diels-Alder reaction, is
stereospecific and is a syn-addition with respect to both the alkene and the diene:

O

O

O

+

O

O

O

H

H

O

O

O

H

H

+

endo exo
Here is an example of the corresponding reaction script:

proc diels_alder {name lib r1s r2s} {
 reagent diene;
 reagent ophile; dien
 diene define "C1C=CC=C1";

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 13

Reaction Language DirectedDiversity Release 3.5

 dienophile define "*C=C*";
 product p;
 p add diene $r1s;
 p add dienophile $r2s;
 p insert bond diene:1 dienophile:1;
 p insert bond diene:4 dienophile:2;
 p set bond diene:1 diene:2 single;
 p set bond diene:3 diene:4 single;
 p set bond diene:2 diene:3 double;
 p set bond dienophile:1 dienophile:2 single syn_product;
 p explode $name $lib;
};

However, the empirical Alder rule says that if two isomeric adducts are possible, the one with
an unsaturated substituent(s) on the alkene oriented toward the newly formed cyclohexene
double bond is the preferred product. In the above example the addition of dienophiles to
cyclopentadiene usually favors the endo stereoisomer. In order to specify that endo isomer is
the main product, the script line with the syn_product keyword should to be replaced with
the following code:

 p set bond dienophile:1 dienophile:2 single;
 p set atom dienophile:1 configuration dienophile:0

dienophile:2 diene:1 H up;
 p set atom dienophile:2 configuration diene:4 dienophile:1

dienophile:3 H up;

In addition, an upward direction of the norbornene bridge should be specified explicitly:

 p set atom diene:1 configuration diene:2 diene:0
d e:1 H downienophil ;

 p set atom diene:4 configuration dienophile:2 diene:0
diene:3 H down;

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 14

Reference Two
 Command Utilities

Overview

Documentation for the command-line utilities is available as part of the DirectedDiversity®
Browser installation in the form of an indexed, searchable help file.

Opening the Command-Line Utilities Documentation

Step Action
1 Click on the Start menu button
2 Click on DirectedDiversity 3.5
3 Click on Documentation
4 Click on Command line tools ref

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 15

Reference Three
 DirectedDiversity® File Formats

Overview

This reference contains additional information about the file formats used by the
DirectedDiversity tools.

Specifically, this reference includes the following sections:

• Indexed Archives Format

• Matrix Files Format

• Structure Files Format

• ZBI Files Format

The following table identifies the appropriate section to read in order to learn more about a
specific area.

To learn more about … Read the section…. See page
Indexed archives formatting Indexed Archives Format 17
ASCII matrix file formatting Matrix Files 18
Binary matrix file formatting 18
Interconverting ASCII and binary files 18
Numerical types for matrix elements 18
SDF files formatting Structure Files Format 20
SMILES files formatting 20
CLB files formatting 20
ZBI files formatting ZBI Files Format 21

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 16

File Formats DirectedDiversity Release 3.5

Indexed Archives Format
Description

An indexed archive is a pair of two files, one containing a list of records in ASCII format,
and another containing a list of indices in binary format. The first file can be any ASCII file
that consists of records of the same type (albeit not necessarily the same length), such as an
SDF or SMILES file. The second file, called an index file, is a binary file containing byte
offsets of each record in the original ASCII file. This information allows fast direct access to
any record in the original file, regardless of the size of the file. An indexed archive is created
by indexing an ASCII file, i.e., by parsing it and generating the corresponding binary index
file. This process does not modify the original ASCII file. An index file is placed either in the
directory with the corresponding ASCII file, or in the system's temporary directory (see
below). Its name is generated by adding the .i extension to the indexed ASCII file's name.
Index files can be created either explicitly (e.g. by running the molindex utility), or implicitly
by applications such as molconvert, the Browser and others.

Before an application uses an index file, it verifies that the indices are in sync with the
corresponding ASCII file. If this is not the case, or if the index file cannot be found, the
application re-creates the index file in the directory where the ASCII file to be indexed
resides. If the user does not have permission to write in that directory, a temporary index file
is created in the system's scratch directory (usually, C:\TEMP). Temporary index files exist
only while the application that creates them is running, and are deleted when that application
exits. NOTE: Deleting the .i index files is not harmful, since they will be automatically
regenerated when needed (which will cause some delay in the program execution).

See Also
Structure File Utilities, Structure Files

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 17

File Formats DirectedDiversity Release 3.5

Matrix Files Format
ASCII Matrix Files

ASCII matrix files are formatted as follows:
nrows<ws>ncols<ws>d11<ws>d12<ws>. . .d1 ncols<ws>d21<ws>d22<ws>. . .d2 ncols<ws>.
. .dnrows 1<ws>dnrows 2<ws>. . .dnrows ncols
where nrows and ncols are the number of rows and columns, respectively, <ws> is one or
more whitespace characters (the space character (0x20) or any other character with the ASCII
code in the range from 0x09 to 0x0D) . dij are string representations of the matrix elements
formatted as follows:
[sign] [digits] [.digits] [{d | D | e | E}[sign]digits]
Sign is either plus (+) or minus (–); and digits are one or more decimal digits. If no digits
appear before the radix character (.), at least one must appear after the radix character. The
decimal digits can be followed by an exponent, which consists of an introductory letter (d, D,
e, or E) and an optionally signed integer. If neither an exponent part nor a radix character
appears, a radix character is assumed to follow the last digit in the string. Here is an example
of a matrix with 2 rows and 3 columns as it is written to an ASCII file:
2 3
1.0 2e-2 3.0
-3.1415926 4.8 7.235

Binary Matrix Files
NOTE: To ensure portability across various computer platforms, all DirectedDiversity
binary files, including matrix files, use the big-endian byte ordering. That is, the bytes with
the lower addresses are more significant than the bytes with the higher addresses. It is the
OPPOSITE of the ordering used in the Intel Architecture. If you need to transfer matrix
data between DirectedDiversity software and any other application, it is recommended that
you use the ASCII format described above. The DirectedDiversity toolset contains the
mconvert utility that can convert an ASCII matrix file to a binary matrix file and vice versa.
A binary matrix file contains a header followed by the matrix elements in the same order as
described above for the ASCII matrix files. The header contains the number of rows and
columns in the matrix represented as a pair of 32-bit integer numbers. The matrix elements
can be of any one of the following numerical types:

Numerical Type Description
float The IEEE single-precision (32-bit) real
double The IEEE double-precision (64-bit) real
long 32-bit signed two's complement integer with the sign bit located in

bit 31
int 32-bit signed two's complement integer with the sign bit located in

bit 31
short 16-bit signed two's complement integer with the sign bit located in

bit 15
ulong 32-bit unsigned integer

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 18

File Formats DirectedDiversity Release 3.5

uint 32-bit unsigned integer
ushort 16-bit unsigned integer

By default, all DirectedDiversity software uses matrix files in the binary float format.

Binary Distance Matrix Format
Description

Binary distance matrices are real symmetric matrices containing all pairwise distances (or
similarities) for a given set of objects. Distance matrices store only the lower triangle in a
row-major order and are sometimes referred to as matrices stored in the symmetric matrix
(packed) format. The diagonal elements may be different. A binary distance matrix file
contains a header followed by the matrix elements, specified in binary format. The header
contains the number of rows (and columns) in the matrix represented as a 32-bit integer
number. The matrix elements can be of any one of the following numerical types:
float
The IEEE single-precision (32-bit) real
double
The IEEE double-precision (64-bit) real
NOTE: To ensure portability across various computer platforms, all DirectedDiversity®
binary files, including distance matrix files, use the big-endian byte ordering. That is, the
bytes with the lower addresses are more significant than the bytes with the higher addresses.
It is the opposite of the ordering used in the Intel® Architecture.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 19

File Formats DirectedDiversity Release 3.5

Structure Files Format
SDF

SDF are MDL® Information Systems, Inc. Structure-Data Files: An SD file contains
structures and data for any number of molecules. The documentation on the SDF format can
be downloaded from the MDL® Information Systems website (follow this link, proceed to
the Download Center->Free Products and Information and download the MDL File
Formats document).

SMILES Files
A SMILES file is an ASCII file that consists of one or more lines (terminated with the
newline character with the ASCII code of 10) formatted as follows:

SMILES_STRING
[NAME][<TAG_NAME1>TAG1<TAG_NAME2>TAG2...<TAG_NAME_n>TAG_n]

The number of lines in the file is equal to the number of molecules it contains.

I. SMILES_STRING is a string representation of the molecule in the Simplified
Molecular Input Line Entry Specification format.

II. NAME is a name of the molecule. It can contain any number of any printable
characters other than the "less than" < character (ASCII 32 – 59, 61-126); the trailing
spaces are insignificant and are removed when a SMILES file is read by the
DirectedDiversity® structure file utilities.

III. TAG_NAME is a name of the tag, which should be enclosed in <>, and TAG is the
tag itself. TAG_NAME can contain any printable characters other than the "less than"
< or "greater than" > character (ASCII 32 – 59, 61, 63-126). TAG can contain any
printable character other than the "less than" < character (ASCII 32 – 59, 61-126);
the trailing spaces are insignificant and are removed when a SMILES file is read by
the DirectedDiversity® structure file utilities.

Here is an example of a SMILES file containing two molecules:
C=O formaldehyde<ID>1540<quantity>50g
ClC(Cl)(Cl)Cl carbon tetrachloride<ID>1541<quantity>100ml

CLB Files
The CLB abbreviation stands for Combinatorial LiBrary format. The CLB format is a
proprietary format developed by 3-Dimensional Pharmaceuticals, Inc. A CLB file contains
complete information about the reagents and reaction scheme and thus stores the products of
the encoded reaction in an implicit form. CLB files are created/read by structure file utilities
and the DirectedDiversity® Browser.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 20

File Formats DirectedDiversity Release 3.5

ZBI Files Format

Description
A ZBI (Zero-Based Index) file is an ASCII files that contain a list of non-negative integers
separated by one or more white space characters. These integers typically represent indices
that identify a subset of elements in a set, such as a subset of structures in a structure file, a
subset of rows or columns in a matrix file, etc. The first integer represents the size of the
subset, i.e. the number of indices that follow, as shown below:
n
i1 i2 i3 ... in
ZBI files are used extensively in many DirectedDiversity® applications.

See Also
zbi, boolean, Structure Files, Matrix Files, Structutre File Utilities, Matrix Utilities

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 21

File Formats DirectedDiversity Release 3.5

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 22

Reference Four
 SMILES

Overview
This reference contains information about the SMILES (Simplified Molecular Input Line
Entry Specification) general-purpose chemical nomenclature and data exchange format.
SMILES specifically represents a valence model of a molecule.

This reference includes the following sections:

• SMILES Notation

• For More Information

The following table identifies the appropriate section to read in order to learn more about a
specific area.

To learn more about … Read the section…. See page
Writing SMILES strings SMILES Notation 24
Getting SMILES information from text and
literature

For More Information 25

Getting SMILES information from web sites 25

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 23

SMILES DirectedDiversity Release 3.5

SMILES Notation

SMILES is a linear notation for chemical graphs. In the SMILES notation, a chemical
structure is represented by a line of ASCII characters not containing whitespaces.

Atoms
Atoms are defined inside square brackets:

[<mass> symbol <chiral> <hydrogen_count> <sign<charge>>]

For example: [OH], [13C], [NH3+], [Fe+2]. The atoms of the "organic subset" can be
represented by their atomic symbols (B, C, N, O, F, P, S, Cl, Br, and I.) without brackets if
the number of attached hydrogens conforms to the lowest normal valence consistent with
explicit bonds. Hydrogen atoms are normally omitted or specified as hydrogen counts within
square brackets. (For example, methane can be encoded as either C, or [CH4], but the methyl
radical can only be encoded as [CH3]). The second letter of an atomic symbol (if any) should
always be lowercase, e.g., Br but not BR. The first letter must be uppercase, unless an atom is
aromatic, in which case either uppercase, or lowercase symbols can be used. For example, O
represents the oxygen in methanol, while o represents the oxygen in furan.

Bonds
Single bonds are represented by `-‘ (or nothing, this is the default bond order), double bonds
are represented by `=’, triple bonds are represented by `#’, and aromatic bonds are
represented by `:’. For example: CC or C-C, C=O, C#N, cc or C:C.

Branching
Branches are specified by enclosing them in parentheses, which may be nested or stacked.
For example:

C(=O)O - carboxylic acid
S(=O)(=O)Cl - sulfonyl chloride
C(C(=O)O)C(=O)O - malonic acid

Rings
Ring closure bonds are specified by appending matching digits to the specifications of the
joined atoms, with the bond symbol preceding the digit (if needed). For example:

C1CCCCC1 - cyclohexane
c1cc2ccccc2cc1 - naphthalene
C12C3C4C1C5C4C3C25 – cubane

Note that there can be more than one digit (ring closures) appended to an atom.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 24

SMILES DirectedDiversity Release 3.5

For more information
Text and Literature

See the Daylight CIS Theory Manual for authoritative information.
See also "SMILES 1. Introduction and Encoding Rules", Weininger, D., J. Chem. Inf.
Comput. Sci., 1988, 28, 31.

Web Site(s)
Refer to the following web sites for additional information about SMILES.

SMILES Specifications
(http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html)

SMILES Tutorial
(http://www.daylight.com/dayhtml/smiles/smiles-intro.html)

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 25

http://www.daylight.com/dayhtml/smiles/smiles-intro.html

SMILES DirectedDiversity Release 3.5

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 26

Reference Five
 SMARTS

Overview
This reference contains information about the SMARTS format. SMARTS is an extension of
SMILES to express molecular structure patterns. It is designed for specifying substructures
to facilitate finding a particular pattern in a molecule. SMARTS uses special atom and bond
symbols as well as logical operators to denote more general patterns.

Specifically, this reference includes the following sections:

• Atomic Primitives

• Bond Primitives

• Logical Operators

• Recursive SMARTS

• For More Information

The following table identifies the appropriate section to read in order to learn more about a
specific area.

To learn more about … Read the section…. See page
Using Atomic Primitives Atomic Primitives 28
Using Bond Primitives Bond Primitives 30
Using Logical Operators Logical Operators 31
Using Recursive SMARTS Recursive SMARTS 32
Getting SMARTS information from web sites For More Information 32

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 27

SMARTS DirectedDiversity Release 3.5

Atomic Primitives

SMARTS provides a number of primitive symbols describing atomic properties beyond those
used in SMILES (atomic symbol, charge, and isotopic specifications). The following table
lists the atomic primitives used in SMARTS (all SMILES atomic symbols are also legal). In
this table <n> stands for a digit, and <c> for a chiral class.

Symbol Symbol name Atomic property requirements Default
* wildcard any atom (no default)
a aromatic aromatic (no default)
A aliphatic aliphatic (no default)
D<n> degree <n> explicit connections (no default)
H<n> total-H-count <n> attached hydrogens exactly one
h<n> implicit-H-count <n> implicit hydrogens exactly one
R<n> ring membership in <n> SSSR rings any ring atom
r<n> ring size in smallest SSSR ring of size <n> any ring atom
v<n> valence total bond order <n> (no default)
X<n> connectivity <n> total connections (no default)

-<n> negative charge -<n> charge
-1 charge (-- is -2,
etc)

+<n> positive charge +<n> formal charge
+1 charge (++ is
+2, etc)

#n atomic number atomic number <n> (no default)

@ chirality anticlockwise
anticlockwise,
default class

@@ chirality clockwise
clockwise, default
class

@<c><n> chirality chiral class <c> chirality <n> (no default)
@<c><n>? chiral or unspec chirality <c><n> or unspecified (no default)
@U chirality unspecified chirality (no default)
<n> atomic mass explicit atomic mass unspecified mass

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 28

SMARTS DirectedDiversity Release 3.5

Examples:

C aliphatic carbon atom
c aromatic carbon atom
a any aromatic atom
[#6] carbon atom
[Ca] calcium atom
[++] atom with a +2 charge
[R] atom in any ring
[D3] atom with 3 explicit bonds (implicit H's don't count)
[X3] atom with 3 total bonds (includes implicit H's)
[v3] atom with bond orders totaling 3 (includes implicit H's)
C[C@H](F)O match chirality (H-F-O anticlockwise viewed from C)
C[C@?H](F)O matches if chirality is as specified or is not specified

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 29

SMARTS DirectedDiversity Release 3.5

Bond Primitives

Various bond symbols are available to match connections between atoms. A missing bond
symbol is interpreted as "single or aromatic".

Symbol Atomic property requirements
- single bond (aliphatic)
/ directional single bond "up"
\ directional single bond "down"
/? directional bond "up or unspecified"
\? directional bond "down or unspecified"
= double bond
triple bond
: aromatic bond
~ any bond (wildcard)
@ any ring bond

Examples:

C any aliphatic carbon
cc any pair of attached aromatic carbons
c:c aromatic carbons joined by an aromatic bond
c-c aromatic carbons joined by a single bond (e.g. biphenyl)

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 30

SMARTS DirectedDiversity Release 3.5

Logical Operators

Atom and bond primitive specifications may be combined to form expressions by using
logical operators. In the following table, "e" is a SMARTS expression (which may be a
primitive). The logical operators are listed in order of decreasing precedence (high
precedence operators are evaluated first).

Symbol Expression Meaning
exclamation !e1 not e1
ampersand e1& e2 a1 and e2 (high precedence)
comma e1,e2 e1 or e2
semicolon e1;e2 a1 and e2 (low precedence)

All atomic expressions that are not simple primitives must be enclosed in brackets. The
default operation is `&' (high precedence "and"), i.e., two adjacent primitives without an
intervening logical operator must both be true for the expression (or subexpression) to be
true. The ability to form expressions gives the SMARTS user the power to specify exactly
what is desired. Two forms of the AND operator are used in SMARTS instead of grouping
operators. Examples:

 [CH2] aliphatic carbon with two hydrogens (methylene carbon)
[!C;R] (NOT aliphatic carbon) AND in ring
[!C;!R0] same as above ("!R0" means not in zero rings)
[n;H] H-pyrrole nitrogen
[n&H] same as above
[nH] same as above
[c,n&H1] any aromatic carbon OR H-pyrrole nitrogen
[c,n;H1] (aromatic carbon OR aromatic nitrogen) and exactly one H
[Cl] any chlorine atom
[35*] any atom of mass 35
[35Cl] chlorine atom of mass 35
[F,Cl,Br,I] the 1st four halogens.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 31

SMARTS DirectedDiversity Release 3.5

Recursive SMARTS

Any SMARTS expression may be used to define an atomic environment by writing a
SMARTS starting with the atom of interest in this form:
$(SMARTS)
Such definitions may be considered atomic properties. These expressions can be used in the
same manner as other atomic primitives (also, they can be nested). Examples:

*C atom connected to methyl (or methylene) carbon
*CC atom connected to ethyl carbon
[$(*C);$(*CC)] atom in both above environments (matches CCC)

The additional power of such expressions is illustrated by the following example, which
derives an expression for methyl carbons that are ortho to oxygen and meta to a nitrogen on
an aromatic ring.

CaaO C ortho to O
CaaaN C meta to N
Caa(O)aN C ortho to O and meta to N (but 2O,3N only)
Ca(aO)aaN C ortho to O and meta to N (but 2O,5N only)
C[$(aaO);$(aaaN)] C ortho to O and meta to N (all cases)

For More Information
Web Site(s)

Refer to the following web site(s) for additional information on SMARTS:
SMARTS Specifications
(http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html)

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 32

Reference Six
 Perl

Overview

Perl is a high-level programming language written by Larry Wall and others. It derives from
the C programming language and to a lesser degree from sed, awk, the Unix shell, and at least
a dozen other sources. Perl's process, file, and text manipulation facilities make it
particularly well suited for tasks involving quick prototyping, system utilities, software tools,
system management tasks, database access, graphical programming, networking, and World
Wide Web programming. Perl is distributed free and supported by its users. The
DirectedDiversity Setup program will install Perl 5.0 if desired.

Web Site
Additional information about Perl can be obtained at the following web sites:

 http://language.perl.com
 http://www.perl.com
 http://www.perl.org

Download Perl for Windows from

http://www.activestate.com/ActivePerl/ (recommended)

or another source, see

http://www.perl.com/CPAN-local/ports/#win32

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 33

http://www.perl.org/

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 34

Reference Seven
 Publications

Overview

This reference lists publications relevant to the DirectedDiversity® Browser and
command-line utilities algorithms.

List of Publications

1. D. K. Agrafiotis, “On the use of information theory for assessing molecular diversity”, J.
Chem. Info. Comp. Sci., 1997, 37(3), 576.

2. D. K. Agrafiotis, “Stochastic algorithms for maximizing molecular diversity”, J. Chem.
Info. Comp. Sci., 1997, 37(5), 841.

3. K. Agrafiotis, J. P. Myslik, and F. R. Salemme, “Advances in diversity profiling and
combinatorial series design”, Mol. Diversity, 1999, 4, 1-22.

4. K. Agrafiotis and V. S. Lobanov, “An efficient implementation of distance-based
diversity metrics based on k-d trees”, J. Chem. Info. Comp. Sci., 1999, 39(1), 51-58.

5. V. S. Lobanov and D. K. Agrafiotis, “Stochastic similarity selections from large
combinatorial libraries”, J. Chem. Info. Comput. Sci., 2000, 40, 460-470.

6. D. K. Agrafiotis and V. S. Lobanov, “Ultrafast algorithm for designing focused
combinatorial arrays”, J. Chem. Info. Comput. Sci., 2000, 40, 1030-1038.

7. D. N. Rassokhin and D. K. Agrafiotis*, “Kolmogorov-Smirnov statistic and its
applications in library design”, J. Mol. Graphics Modell., 2000, 18(4-5), 370-384.

8. D. K. Agrafiotis and V. S. Lobanov, “Nonlinear mapping networks”, J. Chem. Info.
Comput. Sci., 2000, 40, 1356-1362.

9. D. K. Agrafiotis, “A constant time algorithm for estimating the diversity of large
chemical libraries”, J. Chem. Info. Comput. Sci., 2001, 41(1), 159-167.

10. S. Izrailev and D. K. Agrafiotis, “A new method for building regression tree models for
QSAR based on artificial ant colony systems”, J. Chem. Info. Comput. Sci., 2001, 41(1),
176-180.

11. D. N. Rassokhin, V. S. Lobanov, and D. K. Agrafiotis, “Nonlinear mapping of massive
data sets by fuzzy clustering and neural networks”, J. Comput. Chem., 2001, 22(4), 373-
386.

12. D. K. Agrafiotis, D. N. Rassokhin, and V. S. Lobanov, “Multidimensional scaling and
visualization of large molecular similarity tables”, J. Comput. Chem., 2001, 22(5), 488-
500.

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 35

Copyright © 1999-2003 3-Dimensional Pharmaceuticals, Inc. 36

13. D. K. Agrafiotis and D. N. Rassokhin, "Design and prioritization of plates for high-
throughput screening", J. Chem. Info. Comput. Sci., 2001, 41(3), 798-805.

14. D. K. Agrafiotis, “Multiobjective optimization of combinatorial libraries”, IBM J. Res.
Develop., 2001, 45(3/4), 545-566. (Special Issue on Deep Computing in the Life
Sciences).

15. V. S. Lobanov and D. K. Agrafiotis, “Combinatorial networks”, J. Mol. Graphics
Modell., 2001, 19(6), 571-578.

16. D. K. Agrafiotis and V. S. Lobanov, "Multidimensional scaling of combinatorial libraries
without explicit enumeration", J. Comput. Chem., 2001, 22(14), 1712-1722.

17. S. Izrailev and D. K. Agrafiotis, "Variable selection for QSAR by artificial ant colony
systems", SAR and QSAR in Environ. Res., 2002, 13, 417-423.

18. D. K. Agrafiotis and D. N. Rassokhin, "A fractal approach for selecting an appropriate
bin size for cell-based diversity estimation", J. Chem. Info. Comput. Sci., 2002, 42, 117-
122.

19. V. S. Lobanov and D. K. Agrafiotis, “Scalable methods for the construction and analysis
of virtual combinatorial libraries”, Combin. Chem. and High-Throughput Screen., 2002,
5, 167-178.

20. D. K. Agrafiotis and W. Cedeño, "Feature selection for structure-activity correlation
using binary particle swarms", J. Med. Chem., 2002, 45, 1098-1107.

21. D. K. Agrafiotis, V. S. Lobanov, and F. R. Salemme, "Combinatorial informatics in the
post-genomics era, Nature Rev. Drug Discov., 2002, 1, 337-346.

22. D. K. Agrafiotis, W. Cedeño, and V. S. Lobanov, "On the use of neural network
ensembles in QSAR and QSPR", J. Chem. Info. Comput. Sci., 2002, 42, 903-911.

23. H. Xu and D. K. Agrafiotis, "Retrospect and prospect of virtual screening in drug lead
discovery", Curr. Topics Med. Chem., 2002, 2, 1305-1320.

24. D. K. Agrafiotis, “Multiobjective optimization of combinatorial libraries”, J. Comput.
Aid. Mol. Des., 2002, 16, 335-356.

25. W. Cedeño and D. K. Agrafiotis, "Combining particle swarms and k-nearest neighbors
for the development of quantitative structure-activity relationships", Int. J. Comput. Res.,
2002 (in press).

26. W. Cedeño and D. K. Agrafiotis, "Application of niching particle swarms to QSAR and
QSPR", Proceedings of the 14-th European Symposium on QSAR, Bournemouth, UK,
Sep. 8-13, 2002.

27. D. K. Agrafiotis and H. Xu, "A self-organizing principle for learning nonlinear
manifolds", Proc. Natl. Acad. Sci. USA, 2002, 99, 15869-15872.

28. D. K. Agrafiotis, "Stochastic proximity embedding", J. Comput. Chem., 2003, (in press).
29. D. K. Agrafiotis and H. Xu, "A geodesic framework for analyzing molecular

similarities", J. Chem. Info. Comput. Sci., 2003 (in press).
30. W. Cedeño and D. K. Agrafiotis, "Using particle swarms for the development of QSAR

models based on k-nearest neighbor and kernel regression", J. Comput. Aid. Mol. Des.,
2003 (in press).

31. S. Izrailev and D. K. Agrafiotis, "A method for quantifying and visualizing the diversity
of QSAR models", submitted

32. D. N. Rassokhin and D. K. Agrafiotis, "A modified update rule for stochastic proximity
embedding", submitted.

	Table of Contents
	Reaction Language
	Overview
	Exploder Reaction Scripting
	General Syntax Rules
	Sample Script
	Reaction Scheme Definition
	Reagent Definition
	Product Definition
	Execution Trigger

	Stereochemistry in Reaction Scripting
	Addition to a double bond
	Cyclo-addition to a double bond
	Elimination
	Nucleophilic substitution
	Ring opening
	Fused ring formation
	Addition to Carbonyl Group
	Diels-Alder Reaction

	Command Utilities
	Overview
	Opening the Command-Line Utilities Documentation

	DirectedDiversity® File Formats
	Overview
	Indexed Archives Format
	Matrix Files Format
	ASCII Matrix Files
	Binary Matrix Files

	Binary Distance Matrix Format
	Structure Files Format
	SDF
	SMILES Files
	CLB Files

	ZBI Files Format

	SMILES
	Overview
	SMILES Notation
	Atoms
	Bonds
	Branching
	Rings

	For more information
	Text and Literature
	Web Site(s)

	SMARTS
	Overview
	Atomic Primitives
	Bond Primitives
	Logical Operators
	Recursive SMARTS
	For More Information
	Web Site(s)

	Perl
	Overview
	Web Site

	Publications
	Overview
	List of Publications

